Functional Characterization of Arabidopsis Phosphatidylinositol Monophosphate 5-kinase 2 in Lateral Root Development, Gravitropism and Salt Tolerance

Nonfiction, Science & Nature, Science, Biological Sciences, Biochemistry, Botany
Cover of the book Functional Characterization of Arabidopsis Phosphatidylinositol Monophosphate 5-kinase 2 in Lateral Root Development, Gravitropism and Salt Tolerance by Yu Mei, Springer Netherlands
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Yu Mei ISBN: 9789401793735
Publisher: Springer Netherlands Publication: September 4, 2014
Imprint: Springer Language: English
Author: Yu Mei
ISBN: 9789401793735
Publisher: Springer Netherlands
Publication: September 4, 2014
Imprint: Springer
Language: English

The functional characterization of a key enzyme in the phosphatidylinositol (PI) signaling pathway in the model plant Arabidopsis thaliana is the focus of the research summarised in this thesis. Moreover, a particular focus is the exploration of the biological functions of Arabidopsis phophatidylinositol monophosphate 5-kinase 2 (PIP5K2) which catalyzes the synthesis of phophatidylinositol (4,5) bisphosphate, the precursor of two important second messengers (inositol 1,4,5-trisphosphate and diacylglycerol). Through molecular and genetic approaches, the author isolated and characterized the expression pattern, physiological functions and the underlying mechanism of Arabidopsis PIP5K2. It is found that PIP5K2 is involved in regulating lateral root formation and root gravity response through modulating auxin accumulation and polar auxin transport and also plays a critical role in salt tolerance. These findings shed new light on the crosstalk between PI signaling and auxin response, both of which have crucial regulatory roles in plant development.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The functional characterization of a key enzyme in the phosphatidylinositol (PI) signaling pathway in the model plant Arabidopsis thaliana is the focus of the research summarised in this thesis. Moreover, a particular focus is the exploration of the biological functions of Arabidopsis phophatidylinositol monophosphate 5-kinase 2 (PIP5K2) which catalyzes the synthesis of phophatidylinositol (4,5) bisphosphate, the precursor of two important second messengers (inositol 1,4,5-trisphosphate and diacylglycerol). Through molecular and genetic approaches, the author isolated and characterized the expression pattern, physiological functions and the underlying mechanism of Arabidopsis PIP5K2. It is found that PIP5K2 is involved in regulating lateral root formation and root gravity response through modulating auxin accumulation and polar auxin transport and also plays a critical role in salt tolerance. These findings shed new light on the crosstalk between PI signaling and auxin response, both of which have crucial regulatory roles in plant development.

More books from Springer Netherlands

Cover of the book Hilary of Poitiers’ Role in the Arian Struggle by Yu Mei
Cover of the book Antibiotics in Obstetrics and Gynecology by Yu Mei
Cover of the book Geomorphological Landscapes of the World by Yu Mei
Cover of the book Experimental Metastasis: Modeling and Analysis by Yu Mei
Cover of the book Colloids and the Depletion Interaction by Yu Mei
Cover of the book Neuroscience, Consciousness and Spirituality by Yu Mei
Cover of the book Large Dams in Asia by Yu Mei
Cover of the book Soviet Philosophy by Yu Mei
Cover of the book Atlas of Human Chromosome Heteromorphisms by Yu Mei
Cover of the book Eduard Gans and the Hegelian Philosophy of Law by Yu Mei
Cover of the book ROV ’86: Remotely Operated Vehicles by Yu Mei
Cover of the book Moral Responsibility and Ontology by Yu Mei
Cover of the book Earth and Life by Yu Mei
Cover of the book The Human Context by Yu Mei
Cover of the book Mixed Oxide Fuel (Mox) Exploitation and Destruction in Power Reactors by Yu Mei
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy