Feature Engineering for Machine Learning and Data Analytics

Business & Finance, Economics, Statistics, Nonfiction, Computers, Entertainment & Games, Game Programming - Graphics, Database Management
Cover of the book Feature Engineering for Machine Learning and Data Analytics by , CRC Press
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781351721264
Publisher: CRC Press Publication: March 14, 2018
Imprint: CRC Press Language: English
Author:
ISBN: 9781351721264
Publisher: CRC Press
Publication: March 14, 2018
Imprint: CRC Press
Language: English

Feature engineering plays a vital role in big data analytics. Machine learning and data mining algorithms cannot work without data. Little can be achieved if there are few features to represent the underlying data objects, and the quality of results of those algorithms largely depends on the quality of the available features. Feature Engineering for Machine Learning and Data Analytics provides a comprehensive introduction to feature engineering, including feature generation, feature extraction, feature transformation, feature selection, and feature analysis and evaluation.

The book presents key concepts, methods, examples, and applications, as well as chapters on feature engineering for major data types such as texts, images, sequences, time series, graphs, streaming data, software engineering data, Twitter data, and social media data. It also contains generic feature generation approaches, as well as methods for generating tried-and-tested, hand-crafted, domain-specific features.

The first chapter defines the concepts of features and feature engineering, offers an overview of the book, and provides pointers to topics not covered in this book. The next six chapters are devoted to feature engineering, including feature generation for specific data types. The subsequent four chapters cover generic approaches for feature engineering, namely feature selection, feature transformation based feature engineering, deep learning based feature engineering, and pattern based feature generation and engineering. The last three chapters discuss feature engineering for social bot detection, software management, and Twitter-based applications respectively.

This book can be used as a reference for data analysts, big data scientists, data preprocessing workers, project managers, project developers, prediction modelers, professors, researchers, graduate students, and upper level undergraduate students. It can also be used as the primary text for courses on feature engineering, or as a supplement for courses on machine learning, data mining, and big data analytics.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Feature engineering plays a vital role in big data analytics. Machine learning and data mining algorithms cannot work without data. Little can be achieved if there are few features to represent the underlying data objects, and the quality of results of those algorithms largely depends on the quality of the available features. Feature Engineering for Machine Learning and Data Analytics provides a comprehensive introduction to feature engineering, including feature generation, feature extraction, feature transformation, feature selection, and feature analysis and evaluation.

The book presents key concepts, methods, examples, and applications, as well as chapters on feature engineering for major data types such as texts, images, sequences, time series, graphs, streaming data, software engineering data, Twitter data, and social media data. It also contains generic feature generation approaches, as well as methods for generating tried-and-tested, hand-crafted, domain-specific features.

The first chapter defines the concepts of features and feature engineering, offers an overview of the book, and provides pointers to topics not covered in this book. The next six chapters are devoted to feature engineering, including feature generation for specific data types. The subsequent four chapters cover generic approaches for feature engineering, namely feature selection, feature transformation based feature engineering, deep learning based feature engineering, and pattern based feature generation and engineering. The last three chapters discuss feature engineering for social bot detection, software management, and Twitter-based applications respectively.

This book can be used as a reference for data analysts, big data scientists, data preprocessing workers, project managers, project developers, prediction modelers, professors, researchers, graduate students, and upper level undergraduate students. It can also be used as the primary text for courses on feature engineering, or as a supplement for courses on machine learning, data mining, and big data analytics.

More books from CRC Press

Cover of the book Specialist Outreach Clinics in General Practice by
Cover of the book Circuit Analysis and Feedback Amplifier Theory by
Cover of the book Control System Applications by
Cover of the book Offshore Petroleum Drilling and Production by
Cover of the book Building Materials, Health and Indoor Air Quality by
Cover of the book EMQs for the NMRCGP Applied Knowledge Test by
Cover of the book Resilient Health Care by
Cover of the book Python for Bioinformatics by
Cover of the book Cleaning and Cleaning Validation by
Cover of the book Commercial Conflict Management and Dispute Resolution by
Cover of the book Real-Time Expert Systems Computer Architecture by
Cover of the book Occupational Safety and Hygiene VI by
Cover of the book Climate Change and Terrestrial Carbon Sequestration in Central Asia by
Cover of the book Nanoscale Flow by
Cover of the book Corrosion Protection for the Oil and Gas Industry by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy