F# for Machine Learning Essentials

Nonfiction, Computers, Programming, Object Oriented Programming, Programming Languages
Cover of the book F# for Machine Learning Essentials by Sudipta Mukherjee, Packt Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Sudipta Mukherjee ISBN: 9781783989355
Publisher: Packt Publishing Publication: February 25, 2016
Imprint: Packt Publishing Language: English
Author: Sudipta Mukherjee
ISBN: 9781783989355
Publisher: Packt Publishing
Publication: February 25, 2016
Imprint: Packt Publishing
Language: English

Get up and running with machine learning with F# in a fun and functional way

About This Book

  • Design algorithms in F# to tackle complex computing problems
  • Be a proficient F# data scientist using this simple-to-follow guide
  • Solve real-world, data-related problems with robust statistical models, built for a range of datasets

Who This Book Is For

If you are a C# or an F# developer who now wants to explore the area of machine learning, then this book is for you. Familiarity with theoretical concepts and notation of mathematics and statistics would be an added advantage.

What You Will Learn

  • Use F# to find patterns through raw data
  • Build a set of classification systems using Accord.NET, Weka, and F#
  • Run machine learning jobs on the Cloud with MBrace
  • Perform mathematical operations on matrices and vectors using Math.NET
  • Use a recommender system for your own problem domain
  • Identify tourist spots across the globe using inputs from the user with decision tree algorithms

In Detail

The F# functional programming language enables developers to write simple code to solve complex problems. With F#, developers create consistent and predictable programs that are easier to test and reuse, simpler to parallelize, and are less prone to bugs.

If you want to learn how to use F# to build machine learning systems, then this is the book you want.

Starting with an introduction to the several categories on machine learning, you will quickly learn to implement time-tested, supervised learning algorithms. You will gradually move on to solving problems on predicting housing pricing using Regression Analysis. You will then learn to use Accord.NET to implement SVM techniques and clustering. You will also learn to build a recommender system for your e-commerce site from scratch. Finally, you will dive into advanced topics such as implementing neural network algorithms while performing sentiment analysis on your data.

Style and approach

This book is a fast-paced tutorial guide that uses hands-on examples to explain real-world applications of machine learning. Using practical examples, the book will explore several machine learning techniques and also describe how you can use F# to build machine learning systems.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Get up and running with machine learning with F# in a fun and functional way

About This Book

Who This Book Is For

If you are a C# or an F# developer who now wants to explore the area of machine learning, then this book is for you. Familiarity with theoretical concepts and notation of mathematics and statistics would be an added advantage.

What You Will Learn

In Detail

The F# functional programming language enables developers to write simple code to solve complex problems. With F#, developers create consistent and predictable programs that are easier to test and reuse, simpler to parallelize, and are less prone to bugs.

If you want to learn how to use F# to build machine learning systems, then this is the book you want.

Starting with an introduction to the several categories on machine learning, you will quickly learn to implement time-tested, supervised learning algorithms. You will gradually move on to solving problems on predicting housing pricing using Regression Analysis. You will then learn to use Accord.NET to implement SVM techniques and clustering. You will also learn to build a recommender system for your e-commerce site from scratch. Finally, you will dive into advanced topics such as implementing neural network algorithms while performing sentiment analysis on your data.

Style and approach

This book is a fast-paced tutorial guide that uses hands-on examples to explain real-world applications of machine learning. Using practical examples, the book will explore several machine learning techniques and also describe how you can use F# to build machine learning systems.

More books from Packt Publishing

Cover of the book Blackboard Learn Administration by Sudipta Mukherjee
Cover of the book Yii 1.1 Application Development Cookbook by Sudipta Mukherjee
Cover of the book Python Network Programming Cookbook by Sudipta Mukherjee
Cover of the book Spring 5 Design Patterns by Sudipta Mukherjee
Cover of the book Intel Galileo Blueprints by Sudipta Mukherjee
Cover of the book Raspberry Pi By Example by Sudipta Mukherjee
Cover of the book CentOS 7 Server Deployment Cookbook by Sudipta Mukherjee
Cover of the book Hands-On Natural Language Processing with Python by Sudipta Mukherjee
Cover of the book MDX with Microsoft SQL Server 2008 R2 Analysis Services Cookbook by Sudipta Mukherjee
Cover of the book Cassandra Data Modeling and Analysis by Sudipta Mukherjee
Cover of the book Learning VMware vRealize Automation by Sudipta Mukherjee
Cover of the book OpenStack Administration with Ansible by Sudipta Mukherjee
Cover of the book Getting Started with OUYA by Sudipta Mukherjee
Cover of the book Mastering Gephi Network Visualization by Sudipta Mukherjee
Cover of the book Regression Analysis with Python by Sudipta Mukherjee
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy