Earthquake Processes: Physical Modelling, Numerical Simulation and Data Analysis Part I

Nonfiction, Science & Nature, Science, Earth Sciences, Geophysics
Cover of the book Earthquake Processes: Physical Modelling, Numerical Simulation and Data Analysis Part I by , Birkhäuser Basel
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783034882033
Publisher: Birkhäuser Basel Publication: December 6, 2012
Imprint: Birkhäuser Language: English
Author:
ISBN: 9783034882033
Publisher: Birkhäuser Basel
Publication: December 6, 2012
Imprint: Birkhäuser
Language: English

In the last decade of the 20th century, there has been great progress in the physics of earthquake generation; that is, the introduction of laboratory-based fault constitutive laws as a basic equation governing earthquake rupture, quantitative description of tectonic loading driven by plate motion, and a microscopic approach to study fault zone processes. The fault constitutive law plays the role of an interface between microscopic processes in fault zones and macroscopic processes of a fault system, and the plate motion connects diverse crustal activities with mantle dynamics. An ambitious challenge for us is to develop realistic computer simulation models for the complete earthquake process on the basis of microphysics in fault zones and macro-dynamics in the crust-mantle system. Recent advances in high performance computer technology and numerical simulation methodology are bringing this vision within reach. The book consists of two parts and presents a cross-section of cutting-edge research in the field of computational earthquake physics. Part I includes works on microphysics of rupture and fault constitutive laws, and dynamic rupture, wave propagation and strong ground motion. Part II covers earthquake cycles, crustal deformation, plate dynamics, and seismicity change and its physical interpretation. Topics covered in Part I range from the microscopic simulation and laboratory studies of rock fracture and the underlying mechanism for nucleation and catastrophic failure to the development of theoretical models of frictional behaviors of faults; as well as the simulation studies of dynamic rupture processes and seismic wave propagation in a 3-D heterogeneous medium, to the case studies of strong ground motions from the 1999 Chi-Chi earthquake and seismic hazard estimation for Cascadian subduction zone earthquakes.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

In the last decade of the 20th century, there has been great progress in the physics of earthquake generation; that is, the introduction of laboratory-based fault constitutive laws as a basic equation governing earthquake rupture, quantitative description of tectonic loading driven by plate motion, and a microscopic approach to study fault zone processes. The fault constitutive law plays the role of an interface between microscopic processes in fault zones and macroscopic processes of a fault system, and the plate motion connects diverse crustal activities with mantle dynamics. An ambitious challenge for us is to develop realistic computer simulation models for the complete earthquake process on the basis of microphysics in fault zones and macro-dynamics in the crust-mantle system. Recent advances in high performance computer technology and numerical simulation methodology are bringing this vision within reach. The book consists of two parts and presents a cross-section of cutting-edge research in the field of computational earthquake physics. Part I includes works on microphysics of rupture and fault constitutive laws, and dynamic rupture, wave propagation and strong ground motion. Part II covers earthquake cycles, crustal deformation, plate dynamics, and seismicity change and its physical interpretation. Topics covered in Part I range from the microscopic simulation and laboratory studies of rock fracture and the underlying mechanism for nucleation and catastrophic failure to the development of theoretical models of frictional behaviors of faults; as well as the simulation studies of dynamic rupture processes and seismic wave propagation in a 3-D heterogeneous medium, to the case studies of strong ground motions from the 1999 Chi-Chi earthquake and seismic hazard estimation for Cascadian subduction zone earthquakes.

More books from Birkhäuser Basel

Cover of the book Fatty Acids and Inflammatory Skin Diseases by
Cover of the book Mycorrhizal Technology in Agriculture by
Cover of the book Environmental Policy Between Regulation and Market by
Cover of the book Thermo-Hydro-Mechanical Coupling in Fractured Rock by
Cover of the book Genes and Mechanisms in Vertebrate Sex Determination by
Cover of the book Anxiety Disorders by
Cover of the book Cancer and Inflammation by
Cover of the book Migraine: A Neuroinflammatory Disease? by
Cover of the book Effects of Nicotine on Biological Systems II by
Cover of the book Life Cycle Assessment (LCA) — Quo vadis? by
Cover of the book Inflammation and Stroke by
Cover of the book Seismic Hazard of the Circum-Pannonian Region by
Cover of the book Earthquake Prediction by
Cover of the book Modern Immunosuppressives by
Cover of the book Geodetic And Geophysical Effects Associated With Seismic And Volcanic Hazards by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy