Author: | DFT Research Group, John Spencer, Gregor Schöner | ISBN: | 9780199300587 |
Publisher: | Oxford University Press | Publication: | November 12, 2015 |
Imprint: | Oxford University Press | Language: | English |
Author: | DFT Research Group, John Spencer, Gregor Schöner |
ISBN: | 9780199300587 |
Publisher: | Oxford University Press |
Publication: | November 12, 2015 |
Imprint: | Oxford University Press |
Language: | English |
Dynamic Thinking: A Primer on Dynamic Field Theory introduces the reader to a new approach to understanding cognitive and neural dynamics using the concepts of Dynamic Field Theory (DFT). Dynamic Neural Fields are formalizations of how neural populations represent the continuous dimensions of perceptual features, movements, and cognitive decisions. The concepts of DFT establish links between brain and behavior, revealing ways in which models of brain function can be tested with both neural and behavioral measures. Thus, DFT bridges the gap between brain and behavior, between neuroscience and the behavioral sciences. The book provides systematic tutorials on the central concepts of DFT and their grounding in both dynamical systems theory and neurophysiology. The concrete mathematical implementation of these concepts is laid out, supported by hands-on exercises that make use of interactive simulators in MATLAB. The book also contains a large set of exemplary case studies in which the concepts and associated models are used to understand how elementary forms of embodied cognition emerge and develop.
Dynamic Thinking: A Primer on Dynamic Field Theory introduces the reader to a new approach to understanding cognitive and neural dynamics using the concepts of Dynamic Field Theory (DFT). Dynamic Neural Fields are formalizations of how neural populations represent the continuous dimensions of perceptual features, movements, and cognitive decisions. The concepts of DFT establish links between brain and behavior, revealing ways in which models of brain function can be tested with both neural and behavioral measures. Thus, DFT bridges the gap between brain and behavior, between neuroscience and the behavioral sciences. The book provides systematic tutorials on the central concepts of DFT and their grounding in both dynamical systems theory and neurophysiology. The concrete mathematical implementation of these concepts is laid out, supported by hands-on exercises that make use of interactive simulators in MATLAB. The book also contains a large set of exemplary case studies in which the concepts and associated models are used to understand how elementary forms of embodied cognition emerge and develop.