Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling

Nonfiction, Science & Nature, Science, Biological Sciences, Botany
Cover of the book Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling by , Springer Netherlands
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9789401774819
Publisher: Springer Netherlands Publication: June 14, 2016
Imprint: Springer Language: English
Author:
ISBN: 9789401774819
Publisher: Springer Netherlands
Publication: June 14, 2016
Imprint: Springer
Language: English

An Introduction that describes the origin of cytochrome notation also connects to the history of the field, focusing on research in England in the pre-World War II era.  The start of the modern era of studies on structure-function of cytochromes and energy-transducing membrane proteins was marked by the 1988 Nobel Prize in Chemistry, given to J. Deisenhofer, H. Michel, and R. Huber for determination of the crystal structure of the bacterial photosynthetic reaction center. An ab initio logic of presentation in the book discusses the evolution of cytochromes and hemes, followed by theoretical perspectives on electron transfer in proteins and specifically in cytochromes. There is an extensive description of the molecular structures of cytochromes and cytochrome complexes from eukaryotic and prokaryotic sources, bacterial, plant and animal. The presentation of atomic structure information has a major role in these discussions, and makes an important contribution to the broad field of membrane protein structure-function. 

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

An Introduction that describes the origin of cytochrome notation also connects to the history of the field, focusing on research in England in the pre-World War II era.  The start of the modern era of studies on structure-function of cytochromes and energy-transducing membrane proteins was marked by the 1988 Nobel Prize in Chemistry, given to J. Deisenhofer, H. Michel, and R. Huber for determination of the crystal structure of the bacterial photosynthetic reaction center. An ab initio logic of presentation in the book discusses the evolution of cytochromes and hemes, followed by theoretical perspectives on electron transfer in proteins and specifically in cytochromes. There is an extensive description of the molecular structures of cytochromes and cytochrome complexes from eukaryotic and prokaryotic sources, bacterial, plant and animal. The presentation of atomic structure information has a major role in these discussions, and makes an important contribution to the broad field of membrane protein structure-function. 

More books from Springer Netherlands

Cover of the book Solving the Mind-Body Problem by the CODAM Neural Model of Consciousness? by
Cover of the book Insulin & Related Proteins — Structure to Function and Pharmacology by
Cover of the book Stem Cells and Cell Therapy by
Cover of the book The Oceanic Feeling by
Cover of the book Hume’s Theory of Imagination by
Cover of the book The Eye and the Mind by
Cover of the book Retribution, Justice, and Therapy by
Cover of the book Mobile Technologies for Conflict Management by
Cover of the book Leonard Wood and Cuban Independence, 1898–1902 by
Cover of the book Law, Interpretation and Reality by
Cover of the book Bile Acids in Health and Disease by
Cover of the book The Application of Cybernetic Analysis to the Study of International Politics by
Cover of the book Coastal Monitoring through Partnerships by
Cover of the book Cyclodextrins in Pharmacy by
Cover of the book Moore on Right and Wrong by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy