Computing Qualitatively Correct Approximations of Balance Laws

Exponential-Fit, Well-Balanced and Asymptotic-Preserving

Nonfiction, Science & Nature, Mathematics, Counting & Numeration, Differential Equations
Cover of the book Computing Qualitatively Correct Approximations of Balance Laws by Laurent Gosse, Springer Milan
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Laurent Gosse ISBN: 9788847028920
Publisher: Springer Milan Publication: March 30, 2013
Imprint: Springer Language: English
Author: Laurent Gosse
ISBN: 9788847028920
Publisher: Springer Milan
Publication: March 30, 2013
Imprint: Springer
Language: English

Substantial effort has been drawn for years onto the development of (possibly high-order) numerical techniques for the scalar homogeneous conservation law, an equation which is strongly dissipative in L1 thanks to shock wave formation. Such a dissipation property is generally lost when considering hyperbolic systems of conservation laws, or simply inhomogeneous scalar balance laws involving accretive or space-dependent source terms, because of complex wave interactions. An overall weaker dissipation can reveal intrinsic numerical weaknesses through specific nonlinear mechanisms: Hugoniot curves being deformed by local averaging steps in Godunov-type schemes, low-order errors propagating along expanding characteristics after having hit a discontinuity, exponential amplification of truncation errors in the presence of accretive source terms... This book aims at presenting rigorous derivations of different, sometimes called well-balanced, numerical schemes which succeed in reconciling high accuracy with a stronger robustness even in the aforementioned accretive contexts. It is divided into two parts: one dealing with hyperbolic systems of balance laws, such as arising from quasi-one dimensional nozzle flow computations, multiphase WKB approximation of linear Schrödinger equations, or gravitational Navier-Stokes systems. Stability results for viscosity solutions of onedimensional balance laws are sketched. The other being entirely devoted to the treatment of weakly nonlinear kinetic equations in the discrete ordinate approximation, such as the ones of radiative transfer, chemotaxis dynamics, semiconductor conduction, spray dynamics or linearized Boltzmann models. “Caseology” is one of the main techniques used in these derivations. Lagrangian techniques for filtration equations are evoked too. Two-dimensional methods are studied in the context of non-degenerate semiconductor models.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Substantial effort has been drawn for years onto the development of (possibly high-order) numerical techniques for the scalar homogeneous conservation law, an equation which is strongly dissipative in L1 thanks to shock wave formation. Such a dissipation property is generally lost when considering hyperbolic systems of conservation laws, or simply inhomogeneous scalar balance laws involving accretive or space-dependent source terms, because of complex wave interactions. An overall weaker dissipation can reveal intrinsic numerical weaknesses through specific nonlinear mechanisms: Hugoniot curves being deformed by local averaging steps in Godunov-type schemes, low-order errors propagating along expanding characteristics after having hit a discontinuity, exponential amplification of truncation errors in the presence of accretive source terms... This book aims at presenting rigorous derivations of different, sometimes called well-balanced, numerical schemes which succeed in reconciling high accuracy with a stronger robustness even in the aforementioned accretive contexts. It is divided into two parts: one dealing with hyperbolic systems of balance laws, such as arising from quasi-one dimensional nozzle flow computations, multiphase WKB approximation of linear Schrödinger equations, or gravitational Navier-Stokes systems. Stability results for viscosity solutions of onedimensional balance laws are sketched. The other being entirely devoted to the treatment of weakly nonlinear kinetic equations in the discrete ordinate approximation, such as the ones of radiative transfer, chemotaxis dynamics, semiconductor conduction, spray dynamics or linearized Boltzmann models. “Caseology” is one of the main techniques used in these derivations. Lagrangian techniques for filtration equations are evoked too. Two-dimensional methods are studied in the context of non-degenerate semiconductor models.

More books from Springer Milan

Cover of the book The Mathematical Legacy of Leon Ehrenpreis by Laurent Gosse
Cover of the book World Federation of Societies of Anaesthesiologists 50 Years by Laurent Gosse
Cover of the book Clinical Applications of Cardiac CT by Laurent Gosse
Cover of the book Pediatric and Adolescent Sports Traumatology by Laurent Gosse
Cover of the book Ultrasound-guided Musculoskeletal Procedures by Laurent Gosse
Cover of the book The Theory of Evolution and Its Impact by Laurent Gosse
Cover of the book Mechanisms and Management of COPD Exacerbations by Laurent Gosse
Cover of the book Metabolism and Artificial Nutrition in the Critically Ill by Laurent Gosse
Cover of the book Musculoskeletal Diseases 2013-2016 by Laurent Gosse
Cover of the book Coronary Microvascular Dysfunction by Laurent Gosse
Cover of the book Solved Problems in Quantum and Statistical Mechanics by Laurent Gosse
Cover of the book Health Care Provision and Patient Mobility by Laurent Gosse
Cover of the book Human Modelling in Assisted Transportation by Laurent Gosse
Cover of the book Ultrasonography of the Pancreas by Laurent Gosse
Cover of the book Anaesthesia, Pharmacology, Intensive Care and Emergency A.P.I.C.E. by Laurent Gosse
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy