In recent years there has been increased interest in developing computational and mathematical models of learning and adaptation. Computational Neuroscience for Advancing Artificial Intelligence: Models, Methods and Applications captures the latest research in this area, providing a learning theorists with a mathematically sound framework within which evaluate their models. The significance of this book lies in its theoretical advances, which are grounded in an understanding of computational and biological learning. The approach taken moves the entire field closer to a watershed moment of learning models, through the interaction of computer science, psychology and neurobiology.
In recent years there has been increased interest in developing computational and mathematical models of learning and adaptation. Computational Neuroscience for Advancing Artificial Intelligence: Models, Methods and Applications captures the latest research in this area, providing a learning theorists with a mathematically sound framework within which evaluate their models. The significance of this book lies in its theoretical advances, which are grounded in an understanding of computational and biological learning. The approach taken moves the entire field closer to a watershed moment of learning models, through the interaction of computer science, psychology and neurobiology.