Basics of Statistical Physics

Nonfiction, Science & Nature, Science, Physics, Thermodynamics, Quantum Theory
Cover of the book Basics of Statistical Physics by Harald J W Müller-Kirsten, World Scientific Publishing Company
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Harald J W Müller-Kirsten ISBN: 9789814449557
Publisher: World Scientific Publishing Company Publication: March 25, 2013
Imprint: WSPC Language: English
Author: Harald J W Müller-Kirsten
ISBN: 9789814449557
Publisher: World Scientific Publishing Company
Publication: March 25, 2013
Imprint: WSPC
Language: English

Statistics links microscopic and macroscopic phenomena, and requires for this reason a large number of microscopic elements like atoms. The results are values of maximum probability or of averaging.

This introduction to statistical physics concentrates on the basic principles, and attempts to explain these in simple terms supplemented by numerous examples. These basic principles include the difference between classical and quantum statistics, a priori probabilities as related to degeneracies, the vital aspect of indistinguishability as compared with distinguishability in classical physics, the differences between conserved and non-conserved elements, the different ways of counting arrangements in the three statistics (Maxwell–Boltzmann, Fermi–Dirac, Bose–Einstein), the difference between maximization of the number of arrangements of elements, and averaging in the Darwin–Fowler method.

Significant applications to solids, radiation and electrons in metals are treated in separate chapters, as well as Bose–Einstein condensation. This revised second edition contains an additional chapter on the Boltzmann transport equation along with appropriate applications. Also, more examples have been added throughout, as well as further references to literature.

Contents:

  • Introduction
  • Statistical Mechanics of an Ideal Gas (Maxwell)
  • The A Priori Probability
  • Classical Statistics (Maxwell–Boltzmann)
  • Entropy
  • Quantum Statistics
  • Exact Form of Distribution Functions
  • Application to Radiation (Light Quanta)
  • Debye Theory of Specific Heat of Solids
  • Electrons in Metals
  • Limitations of the Preceding Theory — Improvement with Ensemble Method
  • Averaging instead of Maximization, and Bose–Einstein Condensation
  • The Boltzmann Transport Equation

Readership: Advanced undergraduates, graduate students and academics interested in statistical physics.
Key Features:

  • A genuine introduction which assumes only knowledge of elementary quantum mechanics and elementary thermodynamics
  • All arguments and calculations are given in great detail enabling the reader to follow every step, no phrases like “it can easily be shown” are used
  • Numerous examples, many with explicit solutions, introduce the reader to vital applications
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Statistics links microscopic and macroscopic phenomena, and requires for this reason a large number of microscopic elements like atoms. The results are values of maximum probability or of averaging.

This introduction to statistical physics concentrates on the basic principles, and attempts to explain these in simple terms supplemented by numerous examples. These basic principles include the difference between classical and quantum statistics, a priori probabilities as related to degeneracies, the vital aspect of indistinguishability as compared with distinguishability in classical physics, the differences between conserved and non-conserved elements, the different ways of counting arrangements in the three statistics (Maxwell–Boltzmann, Fermi–Dirac, Bose–Einstein), the difference between maximization of the number of arrangements of elements, and averaging in the Darwin–Fowler method.

Significant applications to solids, radiation and electrons in metals are treated in separate chapters, as well as Bose–Einstein condensation. This revised second edition contains an additional chapter on the Boltzmann transport equation along with appropriate applications. Also, more examples have been added throughout, as well as further references to literature.

Contents:

Readership: Advanced undergraduates, graduate students and academics interested in statistical physics.
Key Features:

More books from World Scientific Publishing Company

Cover of the book 2017 Annual Indices for Expatriates and Ordinary Residents on Cost of Living, Wages and Purchasing Power for World's Major Cities by Harald J W Müller-Kirsten
Cover of the book Genericity in Polynomial Optimization by Harald J W Müller-Kirsten
Cover of the book Race for Sustainability by Harald J W Müller-Kirsten
Cover of the book International Seminar on Nuclear War and Planetary Emergencies — 45th Session by Harald J W Müller-Kirsten
Cover of the book The Ultimate Chinese Martial Art by Harald J W Müller-Kirsten
Cover of the book Energy Storage by Harald J W Müller-Kirsten
Cover of the book Lectures on Quantum Computing, Thermodynamics and Statistical Physics by Harald J W Müller-Kirsten
Cover of the book The World Scientific Handbook of Energy by Harald J W Müller-Kirsten
Cover of the book Aqueous Lubrication by Harald J W Müller-Kirsten
Cover of the book Quarks by Harald J W Müller-Kirsten
Cover of the book Gels Handbook by Harald J W Müller-Kirsten
Cover of the book World University Rankings by Harald J W Müller-Kirsten
Cover of the book 2016 Annual Competitiveness and Growth Slowdown Analysis for Sub-National Economies of India by Harald J W Müller-Kirsten
Cover of the book Kernel Smoothing in Matlab by Harald J W Müller-Kirsten
Cover of the book Good Intentions Are Not Enough by Harald J W Müller-Kirsten
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy