Apollo and America's Moon Landing Program: Unconventional, Contrary, and Ugly: The Lunar Landing Research Vehicle (NASA SP-2004-4535) - Design and Development, LLTV, Armstrong

Nonfiction, Science & Nature, Science, Physics, Astronomy, History, Americas
Cover of the book Apollo and America's Moon Landing Program: Unconventional, Contrary, and Ugly: The Lunar Landing Research Vehicle (NASA SP-2004-4535) - Design and Development, LLTV, Armstrong by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781465991911
Publisher: Progressive Management Publication: December 10, 2011
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781465991911
Publisher: Progressive Management
Publication: December 10, 2011
Imprint: Smashwords Edition
Language: English

This official NASA history document - converted for accurate flowing-text e-book format reproduction - is the complete story of the important training vehicle for the Apollo moon landings, the Lunar Landing Research Vehicle (LLRV) and the later version, the Lunar Landing Training Vehicle (LLTV). In the foreword, Neil Armstrong writes:

"Unconventional, Contrary, & Ugly: The Lunar Landing Research Vehicle tells the complete story of this remarkable machine, the Lunar Landing Research Vehicle, including its difficulties, its successes, and its substantial contribution to the Apollo program. The authors are engineers who were at the heart of the effort. They tell the tale that they alone know and can describe. Six crews landed their Lunar Modules on the moon. They landed on the dusty sands of the Sea of Tranquility and the Ocean of Storms. They landed in the lunar highlands at Fra Mauro and on the Cayley Plains. They landed near the Apennine and Taurus Mountains. Each landing, in widely different topography, was performed safely under the manual piloting of the flight commander. During no flight did pilots come close to sticking a landing pad in a crater or tipping the craft over. That success is due, in no small measure, to the experience and confidence gained in the defining research studies and in the pilot experience and training provided by the LLRV and LLTV. Someday men will return to the moon. When they do, they are quite likely to need the knowledge, the techniques, and the machine described in this volume."

When the United States began considering a piloted voyage to the moon, an enormous number of unknowns about strategies, techniques, and equipment existed. Some people began wondering how a landing maneuver might be performed on the lunar surface.

From the beginning of the age of flight, landing has been among the most challenging of flight maneuvers. Touching down smoothly has been the aim of pilots throughout the first century of flight. Designers have sought the optimum aircraft configuration for landing. Engineers have sought the optimum sensors and instruments for best providing the pilot with the information needed to perform the maneuver efficiently and safely. Pilots also have sought the optimum trajectory and control techniques to complete the approach and touchdown reliably and repeatably.

Landing a craft on the moon was, in a number of ways, quite different from landing on Earth. The lunar gravitational field is much weaker than Earth's. There were no runways, lights, radio beacons, or navigational aids of any kind. The moon had no atmosphere. Airplane wings or helicopter rotors would not support the craft. The type of controls used conventionally on Earth-based aircraft could not be used. The lack of an atmosphere also meant that conventional flying instrumentation reflecting airspeed and altitude, and rate of climb and descent, would be useless because it relied on static and dynamic air pressure to measure changes, something lacking on the moon's surface.

Lift could be provided by a rocket engine, and small rocket engines could be arranged to control the attitude of the craft. But what trajectories should be selected? What type of steering, speed, and rate-of-descent controls should be provided? What kind of sensors could be used? What kind of instruments would provide helpful information to the pilot? Should the landing be performed horizontally on wheels or skids, or vertically? How accurately would the craft need to be positioned for landing? What visibility would the pilot need, and how could it be provided?

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This official NASA history document - converted for accurate flowing-text e-book format reproduction - is the complete story of the important training vehicle for the Apollo moon landings, the Lunar Landing Research Vehicle (LLRV) and the later version, the Lunar Landing Training Vehicle (LLTV). In the foreword, Neil Armstrong writes:

"Unconventional, Contrary, & Ugly: The Lunar Landing Research Vehicle tells the complete story of this remarkable machine, the Lunar Landing Research Vehicle, including its difficulties, its successes, and its substantial contribution to the Apollo program. The authors are engineers who were at the heart of the effort. They tell the tale that they alone know and can describe. Six crews landed their Lunar Modules on the moon. They landed on the dusty sands of the Sea of Tranquility and the Ocean of Storms. They landed in the lunar highlands at Fra Mauro and on the Cayley Plains. They landed near the Apennine and Taurus Mountains. Each landing, in widely different topography, was performed safely under the manual piloting of the flight commander. During no flight did pilots come close to sticking a landing pad in a crater or tipping the craft over. That success is due, in no small measure, to the experience and confidence gained in the defining research studies and in the pilot experience and training provided by the LLRV and LLTV. Someday men will return to the moon. When they do, they are quite likely to need the knowledge, the techniques, and the machine described in this volume."

When the United States began considering a piloted voyage to the moon, an enormous number of unknowns about strategies, techniques, and equipment existed. Some people began wondering how a landing maneuver might be performed on the lunar surface.

From the beginning of the age of flight, landing has been among the most challenging of flight maneuvers. Touching down smoothly has been the aim of pilots throughout the first century of flight. Designers have sought the optimum aircraft configuration for landing. Engineers have sought the optimum sensors and instruments for best providing the pilot with the information needed to perform the maneuver efficiently and safely. Pilots also have sought the optimum trajectory and control techniques to complete the approach and touchdown reliably and repeatably.

Landing a craft on the moon was, in a number of ways, quite different from landing on Earth. The lunar gravitational field is much weaker than Earth's. There were no runways, lights, radio beacons, or navigational aids of any kind. The moon had no atmosphere. Airplane wings or helicopter rotors would not support the craft. The type of controls used conventionally on Earth-based aircraft could not be used. The lack of an atmosphere also meant that conventional flying instrumentation reflecting airspeed and altitude, and rate of climb and descent, would be useless because it relied on static and dynamic air pressure to measure changes, something lacking on the moon's surface.

Lift could be provided by a rocket engine, and small rocket engines could be arranged to control the attitude of the craft. But what trajectories should be selected? What type of steering, speed, and rate-of-descent controls should be provided? What kind of sensors could be used? What kind of instruments would provide helpful information to the pilot? Should the landing be performed horizontally on wheels or skids, or vertically? How accurately would the craft need to be positioned for landing? What visibility would the pilot need, and how could it be provided?

More books from Progressive Management

Cover of the book Other than War: The American Military Experience and Operations in the Post-Cold War Decade, 19th and 20th Century, Central America, Panama, Caribbean, Humanitarian, Stability Operations by Progressive Management
Cover of the book Comprehensive Guide to Naval Aviation History: United States Naval Aviation 1910 - 1995 - Pioneers, World War II, Korea, Ships, Aircraft, Helicopters, Carriers, Pilot Heroes by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: Legal Support to Operations (FM 27-100) Capstone Legal Doctrinal Manual for JAG Legal Services, Plus Bonus IED Book (Value-added Professional Format Series) by Progressive Management
Cover of the book U.S. Government Counterinsurgency Guide: Theory and Principles, Components of COIN Strategy, NGOs, Country Teams, Private Sector, USAID, Afghanistan by Progressive Management
Cover of the book 21st Century FEMA Study Course: Exercise Evaluation and Improvement Planning (IS-130) - After Action Reports, Homeland Security Exercise and Evaluation Program (HSEEP) by Progressive Management
Cover of the book Military and Department of Defense Response to Climate Change and Emerging Environmental Issues, Adaptation Roadmap, Security Challenge, Global Warming Military Implications by Progressive Management
Cover of the book Aerospace Power in the Twenty-First Century: A Basic Primer - Air and Space Power, Doctrine and Strategy, Airpower, Satellites, Billy Mitchell, Claire Chennault, Reconnaissance by Progressive Management
Cover of the book From Transformation to Combat: The First Stryker Brigade at War - The Test of Combat in Iraq in 2003 - 2004, Mosul, Baghdad, An Najaf, Tall Afar, Carter Ham by Progressive Management
Cover of the book Mars Wars: The Rise and Fall of the Space Exploration Initiative - President George H. W. Bush, Quayle, Truly, NASA's 90-Day Study, Washington Space Policy Power Struggle over the Moon - Mars Program by Progressive Management
Cover of the book Central Valley Project: Bureau of Reclamation Reports on San Luis Unit, Auburn Dam, Corps of Engineers, Delta Division, Friant Division, Sacramento River Division, Shasta Division, Trinity Division by Progressive Management
Cover of the book 21st Century Adult Cancer Sourcebook: Chronic Myeloproliferative Disorders - Chronic Myelogenous Leukemia, Polycythemia Vera, Myelofibrosis, Thrombocythemia, Neutrophilic Leukemia by Progressive Management
Cover of the book Way Station to Space: A History of the John C. Stennis Space Center - Mississippi Test Facility, Apollo Program, Saturn V, Space Shuttle STS Space Shuttle Main Engine (SSME), Challenger Accident by Progressive Management
Cover of the book Past and Potential Theory for Special Warfare Operational Art: People's War and Contentious Politics – Guerilla Warfare and Insurgency as Theories from 1952 to 1965, Adaptation of Mao Zedong’s Idea by Progressive Management
Cover of the book Conduct of the Persian Gulf War: Final Report To Congress - Invasion of Kuwait, Saddam Hussein, Operation Desert Shield and Desert Storm, Maritime Interception, Air and Ground Campaign by Progressive Management
Cover of the book 21st Century Hepatitis C (HCV) Sourcebook: Clinical Data for Patients, Families, and Physicians - Cirrhosis, Hepatocellular Carcinoma (HCC), Liver Transplants, New Medications by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy