An Axiomatic Approach to Geometry

Geometric Trilogy I

Nonfiction, Science & Nature, Mathematics, Geometry, History
Cover of the book An Axiomatic Approach to Geometry by Francis Borceux, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Francis Borceux ISBN: 9783319017303
Publisher: Springer International Publishing Publication: October 31, 2013
Imprint: Springer Language: English
Author: Francis Borceux
ISBN: 9783319017303
Publisher: Springer International Publishing
Publication: October 31, 2013
Imprint: Springer
Language: English

Focusing methodologically on those historical aspects that are relevant to supporting intuition in axiomatic approaches to geometry, the book develops systematic and modern approaches to the three core aspects of axiomatic geometry: Euclidean, non-Euclidean and projective. Historically, axiomatic geometry marks the origin of formalized mathematical activity. It is in this discipline that most historically famous problems can be found, the solutions of which have led to various presently very active domains of research, especially in algebra. The recognition of the coherence of two-by-two contradictory axiomatic systems for geometry (like one single parallel, no parallel at all, several parallels) has led to the emergence of mathematical theories based on an arbitrary system of axioms, an essential feature of contemporary mathematics.

This is a fascinating book for all those who teach or study axiomatic geometry, and who are interested in the history of geometry or who want to see a complete proof of one of the famous problems encountered, but not solved, during their studies: circle squaring, duplication of the cube, trisection of the angle, construction of regular polygons, construction of models of non-Euclidean geometries, etc. It also provides hundreds of figures that support intuition.

Through 35 centuries of the history of geometry, discover the birth and follow the evolution of those innovative ideas that allowed humankind to develop so many aspects of contemporary mathematics. Understand the various levels of rigor which successively established themselves through the centuries. Be amazed, as mathematicians of the 19th century were, when observing that both an axiom and its contradiction can be chosen as a valid basis for developing a mathematical theory. Pass through the door of this incredible world of axiomatic mathematical theories!

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Focusing methodologically on those historical aspects that are relevant to supporting intuition in axiomatic approaches to geometry, the book develops systematic and modern approaches to the three core aspects of axiomatic geometry: Euclidean, non-Euclidean and projective. Historically, axiomatic geometry marks the origin of formalized mathematical activity. It is in this discipline that most historically famous problems can be found, the solutions of which have led to various presently very active domains of research, especially in algebra. The recognition of the coherence of two-by-two contradictory axiomatic systems for geometry (like one single parallel, no parallel at all, several parallels) has led to the emergence of mathematical theories based on an arbitrary system of axioms, an essential feature of contemporary mathematics.

This is a fascinating book for all those who teach or study axiomatic geometry, and who are interested in the history of geometry or who want to see a complete proof of one of the famous problems encountered, but not solved, during their studies: circle squaring, duplication of the cube, trisection of the angle, construction of regular polygons, construction of models of non-Euclidean geometries, etc. It also provides hundreds of figures that support intuition.

Through 35 centuries of the history of geometry, discover the birth and follow the evolution of those innovative ideas that allowed humankind to develop so many aspects of contemporary mathematics. Understand the various levels of rigor which successively established themselves through the centuries. Be amazed, as mathematicians of the 19th century were, when observing that both an axiom and its contradiction can be chosen as a valid basis for developing a mathematical theory. Pass through the door of this incredible world of axiomatic mathematical theories!

More books from Springer International Publishing

Cover of the book Corporate Social Responsibility in Poland by Francis Borceux
Cover of the book Examining Effective Practices at Minority-Serving Institutions by Francis Borceux
Cover of the book The Latest Methods of Construction Design by Francis Borceux
Cover of the book Distance Sampling: Methods and Applications by Francis Borceux
Cover of the book Fundamentals of Machine Theory and Mechanisms by Francis Borceux
Cover of the book Managing Agricultural Enterprises by Francis Borceux
Cover of the book Evil, Fallenness, and Finitude by Francis Borceux
Cover of the book Key Initiatives in Corporate Social Responsibility by Francis Borceux
Cover of the book E-Learning, E-Education, and Online Training by Francis Borceux
Cover of the book Cartography of the Sun and the Stars by Francis Borceux
Cover of the book Information Systems Architecture and Technology: Proceedings of 39th International Conference on Information Systems Architecture and Technology – ISAT 2018 by Francis Borceux
Cover of the book Wireless and Satellite Systems by Francis Borceux
Cover of the book Security, Privacy, and Anonymity in Computation, Communication, and Storage by Francis Borceux
Cover of the book Knowledge Science, Engineering and Management by Francis Borceux
Cover of the book Liquidity Risk, Efficiency and New Bank Business Models by Francis Borceux
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy