Author: | Cagdas Hakan Aladag | ISBN: | 9781681085289 |
Publisher: | Bentham Science Publishers | Publication: | December 5, 2017 |
Imprint: | Language: | English |
Author: | Cagdas Hakan Aladag |
ISBN: | 9781681085289 |
Publisher: | Bentham Science Publishers |
Publication: | December 5, 2017 |
Imprint: | |
Language: | English |
This volume is a valuable source of recent knowledge about advanced time series forecasting techniques such as artificial neural networks, fuzzy time series, or hybrid approaches. New forecasting frameworks are discussed and their application is demonstrated. The second volume of the series includes applications of some powerful forecasting approaches with a focus on fuzzy time series methods. Chapters integrate these methods with concepts such as neural networks, high order multivariate systems, deterministic trends, distance measurement and much more. The chapters are contributed by eminent scholars and serve to motivate and accelerate future progress while introducing new branches of time series forecasting. This book is a valuable resource for MSc and PhD students, academic personnel and researchers seeking updated and critically important information on the concepts of advanced time series forecasting and its applications.
This volume is a valuable source of recent knowledge about advanced time series forecasting techniques such as artificial neural networks, fuzzy time series, or hybrid approaches. New forecasting frameworks are discussed and their application is demonstrated. The second volume of the series includes applications of some powerful forecasting approaches with a focus on fuzzy time series methods. Chapters integrate these methods with concepts such as neural networks, high order multivariate systems, deterministic trends, distance measurement and much more. The chapters are contributed by eminent scholars and serve to motivate and accelerate future progress while introducing new branches of time series forecasting. This book is a valuable resource for MSc and PhD students, academic personnel and researchers seeking updated and critically important information on the concepts of advanced time series forecasting and its applications.