Advances in Biology and Therapy of Multiple Myeloma

Volume 1: Basic Science

Nonfiction, Health & Well Being, Medical, Specialties, Oncology, Medical Science, Pharmacology
Cover of the book Advances in Biology and Therapy of Multiple Myeloma by , Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781461446668
Publisher: Springer New York Publication: November 15, 2012
Imprint: Springer Language: English
Author:
ISBN: 9781461446668
Publisher: Springer New York
Publication: November 15, 2012
Imprint: Springer
Language: English

Despite the advances in conventional, novel agent and high dose chemotherapy multiple myeloma (MM) remains incurable. In order to overcome resistance to current therapies and improve patient outcome, novel biologically-based treatment approaches are being developed. Current translational research in MM focusing on the development of molecularly-based combination therapies has great promise to achieve high frequency and durable responses in the majority of patients. Two major advances are making this goal possible. First, recent advances in genomics and proteomics in MM have allowed for increased understanding of disease pathogenesis, identified novel therapeutic targets, allowed for molecular classification, and provided the scientific rationale for combining targeted therapies to increase tumor cell cytotoxicity and abrogate drug resistance. Second, there is now an increased understanding of how adhesion of MM cells in bone marrow (BM) further impacts gene expression in MM cells, as well as in BM stromal cells (BMSCs). As a result of these advances in oncogenomics on the one hand and increased understanding of the role of the BM in the pathogenesis of MM on the other, a new treatment paradigm targeting the tumor cell and its BM microenvironment to overcome drug resistance and improve patient outcome has now been developed. Thalidomide, lenalidomide, and Bortezomib are three agents which target the tumor cell in its microenvironment in both laboratory and animal models and which have rapidly translated from the bench to the bedside. Ongoing efforts are using oncogenomics and cell signaling studies to identify next generation of therapies in MM on the one hand, and to inform the design of combination trials on the other. This new paradigm for overcoming drug resistance and improving patient outcome in MM has great promise not only to change the natural history of MM, but also to serve as a model for targeted therapeutics directed to improve outcome of patients with MM.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Despite the advances in conventional, novel agent and high dose chemotherapy multiple myeloma (MM) remains incurable. In order to overcome resistance to current therapies and improve patient outcome, novel biologically-based treatment approaches are being developed. Current translational research in MM focusing on the development of molecularly-based combination therapies has great promise to achieve high frequency and durable responses in the majority of patients. Two major advances are making this goal possible. First, recent advances in genomics and proteomics in MM have allowed for increased understanding of disease pathogenesis, identified novel therapeutic targets, allowed for molecular classification, and provided the scientific rationale for combining targeted therapies to increase tumor cell cytotoxicity and abrogate drug resistance. Second, there is now an increased understanding of how adhesion of MM cells in bone marrow (BM) further impacts gene expression in MM cells, as well as in BM stromal cells (BMSCs). As a result of these advances in oncogenomics on the one hand and increased understanding of the role of the BM in the pathogenesis of MM on the other, a new treatment paradigm targeting the tumor cell and its BM microenvironment to overcome drug resistance and improve patient outcome has now been developed. Thalidomide, lenalidomide, and Bortezomib are three agents which target the tumor cell in its microenvironment in both laboratory and animal models and which have rapidly translated from the bench to the bedside. Ongoing efforts are using oncogenomics and cell signaling studies to identify next generation of therapies in MM on the one hand, and to inform the design of combination trials on the other. This new paradigm for overcoming drug resistance and improving patient outcome in MM has great promise not only to change the natural history of MM, but also to serve as a model for targeted therapeutics directed to improve outcome of patients with MM.

More books from Springer New York

Cover of the book Optical Metamaterials by
Cover of the book Aging and Money by
Cover of the book Complex Analysis by
Cover of the book Fundamentals of Chromatin by
Cover of the book Excel 2010 for Educational and Psychological Statistics by
Cover of the book A Course in Mathematical Statistics and Large Sample Theory by
Cover of the book Chassin's Operative Strategy in General Surgery by
Cover of the book Reviews of Environmental Contamination and Toxicology by
Cover of the book Encyclopedia of Terminology for Educational Communications and Technology by
Cover of the book Trade Policy in the Asia-Pacific by
Cover of the book Architecture of Brazil by
Cover of the book Social Judgment and Intergroup Relations by
Cover of the book Internationalizing the Curriculum in Organizational Psychology by
Cover of the book Stem Cells: Current Challenges and New Directions by
Cover of the book DNA Topoisomerases and Cancer by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy