Acids and Bases

Solvent Effects on Acid-Base Strength

Nonfiction, Science & Nature, Science, Chemistry, Physical & Theoretical, Physics, General Physics
Cover of the book Acids and Bases by Brian G. Cox, OUP Oxford
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Brian G. Cox ISBN: 9780191649349
Publisher: OUP Oxford Publication: January 31, 2013
Imprint: OUP Oxford Language: English
Author: Brian G. Cox
ISBN: 9780191649349
Publisher: OUP Oxford
Publication: January 31, 2013
Imprint: OUP Oxford
Language: English

Acids and bases are ubiquitous in chemistry. Our understanding of them, however, is dominated by their behaviour in water. Transfer to non-aqueous solvents leads to profound changes in acid-base strengths and to the rates and equilibria of many processes: for example, synthetic reactions involving acids, bases and nucleophiles; isolation of pharmaceutical actives through salt formation; formation of zwitter- ions in amino acids; and chromatographic separation of substrates. This book seeks to enhance our understanding of acids and bases by reviewing and analysing their behaviour in non-aqueous solvents. The behaviour is related where possible to that in water, but correlations and contrasts between solvents are also presented. Fundamental background material is provided in the initial chapters: quantitative aspects of acid-base equilibria, including definitions and relationships between solution pH and species distribution; the influence of molecular structure on acid strengths; and acidity in aqueous solution. Solvent properties are reviewed, along with the magnitude of the interaction energies of solvent molecules with (especially) ions; the ability of solvents to participate in hydrogen bonding and to accept or donate electron pairs is seen to be crucial. Experimental methods for determining dissociation constants are described in detail. In the remaining chapters, dissociation constants of a wide range of acids in three distinct classes of solvents are discussed: protic solvents, such as alcohols, which are strong hydrogen-bond donors; basic, polar aprotic solvents, such as dimethylformamide; and low-basicity and low polarity solvents, such as acetonitrile and tetrahydrofuran. Dissociation constants of individual acids vary over more than 20 orders of magnitude among the solvents, and there is a strong differentiation between the response of neutral and charged acids to solvent change. Ion-pairing and hydrogen-bonding equilibria, such as between phenol and phenoxide ions, play an increasingly important role as the solvent polarity decreases, and their influence on acid-base equilibria and salt formation is described.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Acids and bases are ubiquitous in chemistry. Our understanding of them, however, is dominated by their behaviour in water. Transfer to non-aqueous solvents leads to profound changes in acid-base strengths and to the rates and equilibria of many processes: for example, synthetic reactions involving acids, bases and nucleophiles; isolation of pharmaceutical actives through salt formation; formation of zwitter- ions in amino acids; and chromatographic separation of substrates. This book seeks to enhance our understanding of acids and bases by reviewing and analysing their behaviour in non-aqueous solvents. The behaviour is related where possible to that in water, but correlations and contrasts between solvents are also presented. Fundamental background material is provided in the initial chapters: quantitative aspects of acid-base equilibria, including definitions and relationships between solution pH and species distribution; the influence of molecular structure on acid strengths; and acidity in aqueous solution. Solvent properties are reviewed, along with the magnitude of the interaction energies of solvent molecules with (especially) ions; the ability of solvents to participate in hydrogen bonding and to accept or donate electron pairs is seen to be crucial. Experimental methods for determining dissociation constants are described in detail. In the remaining chapters, dissociation constants of a wide range of acids in three distinct classes of solvents are discussed: protic solvents, such as alcohols, which are strong hydrogen-bond donors; basic, polar aprotic solvents, such as dimethylformamide; and low-basicity and low polarity solvents, such as acetonitrile and tetrahydrofuran. Dissociation constants of individual acids vary over more than 20 orders of magnitude among the solvents, and there is a strong differentiation between the response of neutral and charged acids to solvent change. Ion-pairing and hydrogen-bonding equilibria, such as between phenol and phenoxide ions, play an increasingly important role as the solvent polarity decreases, and their influence on acid-base equilibria and salt formation is described.

More books from OUP Oxford

Cover of the book Situational Judgement Test by Brian G. Cox
Cover of the book Epic Performances from the Middle Ages into the Twenty-First Century by Brian G. Cox
Cover of the book The European Convention on Human Rights and the Conflict in Northern Ireland by Brian G. Cox
Cover of the book The African Affairs Reader by Brian G. Cox
Cover of the book Adult Congenital Heart Disease by Brian G. Cox
Cover of the book Jobs For Development by Brian G. Cox
Cover of the book Re-Envisioning Christian Humanism by Brian G. Cox
Cover of the book Hope in a Democratic Age by Brian G. Cox
Cover of the book The Long Life by Brian G. Cox
Cover of the book Gödel's Disjunction by Brian G. Cox
Cover of the book Blackstone's Crime Investigators' Handbook by Brian G. Cox
Cover of the book The Oxford Handbook of Shakespearean Tragedy by Brian G. Cox
Cover of the book Multiple Sclerosis by Brian G. Cox
Cover of the book The Devil: A Very Short Introduction by Brian G. Cox
Cover of the book A Dictionary of World Mythology by Brian G. Cox
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy