A Systems Theoretic Approach to Systems and Synthetic Biology I: Models and System Characterizations

Nonfiction, Computers, Advanced Computing, Computer Science, Science & Nature, Science, Biological Sciences, Health & Well Being, Medical
Cover of the book A Systems Theoretic Approach to Systems and Synthetic Biology I: Models and System Characterizations by , Springer Netherlands
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9789401790413
Publisher: Springer Netherlands Publication: July 3, 2014
Imprint: Springer Language: English
Author:
ISBN: 9789401790413
Publisher: Springer Netherlands
Publication: July 3, 2014
Imprint: Springer
Language: English

The complexity of biological systems has intrigued scientists from many disciplines and has given birth to the highly influential field of systems biology wherein a wide array of mathematical techniques, such as flux balance analysis, and technology platforms, such as next generation sequencing, is used to understand, elucidate, and predict the functions of complex biological systems.  More recently, the field of synthetic biology, i.e., de novo engineering of biological systems, has emerged. Scientists from various fields are focusing on how to render this engineering process more predictable, reliable, scalable, affordable, and easy. 

Systems and control theory is a branch of engineering and applied sciences that rigorously deals with the complexities and uncertainties of interconnected systems with the objective of characterising fundamental systemic properties such as stability, robustness, communication capacity, and other performance metrics. Systems and control theory also strives to offer concepts and methods that facilitate the design of systems with rigorous guarantees on these properties. Over the last 100 years, it has made stellar theoretical and technological contributions in diverse fields such as aerospace, telecommunication, storage, automotive, power systems, and others. Can it have, or evolve to have, a similar impact in biology? The chapters in this book demonstrate that, indeed, systems and control theoretic concepts and techniques can have a significant impact in systems and synthetic biology. 

Volume I provides a panoramic view that illustrates the potential of such mathematical methods in systems and synthetic biology.  Recent advances in systems and synthetic biology have clearly demonstrated the benefits of a rigorous and systematic approach rooted in the principles of systems and control theory - not only does it lead to exciting insights and discoveries but it also reduces the inordinately lengthy trial-and-error process of wet-lab experimentation, thereby facilitating significant savings in human and financial resources.  In Volume I, some of the leading researchers in the field of systems and synthetic biology demonstrate how systems and control theoretic concepts and techniques can be useful, or should evolve to be useful, in order to understand how biological systems function. 

As the eminent computer scientist Donald Knuth put it, "biology easily has 500 years of exciting problems to work on". This edited book presents but a small fraction of those for the benefit of (1) systems and control theorists interested in molecular and cellular biology and (2) biologists interested in rigorous modelling, analysis and control of biological systems.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The complexity of biological systems has intrigued scientists from many disciplines and has given birth to the highly influential field of systems biology wherein a wide array of mathematical techniques, such as flux balance analysis, and technology platforms, such as next generation sequencing, is used to understand, elucidate, and predict the functions of complex biological systems.  More recently, the field of synthetic biology, i.e., de novo engineering of biological systems, has emerged. Scientists from various fields are focusing on how to render this engineering process more predictable, reliable, scalable, affordable, and easy. 

Systems and control theory is a branch of engineering and applied sciences that rigorously deals with the complexities and uncertainties of interconnected systems with the objective of characterising fundamental systemic properties such as stability, robustness, communication capacity, and other performance metrics. Systems and control theory also strives to offer concepts and methods that facilitate the design of systems with rigorous guarantees on these properties. Over the last 100 years, it has made stellar theoretical and technological contributions in diverse fields such as aerospace, telecommunication, storage, automotive, power systems, and others. Can it have, or evolve to have, a similar impact in biology? The chapters in this book demonstrate that, indeed, systems and control theoretic concepts and techniques can have a significant impact in systems and synthetic biology. 

Volume I provides a panoramic view that illustrates the potential of such mathematical methods in systems and synthetic biology.  Recent advances in systems and synthetic biology have clearly demonstrated the benefits of a rigorous and systematic approach rooted in the principles of systems and control theory - not only does it lead to exciting insights and discoveries but it also reduces the inordinately lengthy trial-and-error process of wet-lab experimentation, thereby facilitating significant savings in human and financial resources.  In Volume I, some of the leading researchers in the field of systems and synthetic biology demonstrate how systems and control theoretic concepts and techniques can be useful, or should evolve to be useful, in order to understand how biological systems function. 

As the eminent computer scientist Donald Knuth put it, "biology easily has 500 years of exciting problems to work on". This edited book presents but a small fraction of those for the benefit of (1) systems and control theorists interested in molecular and cellular biology and (2) biologists interested in rigorous modelling, analysis and control of biological systems.

More books from Springer Netherlands

Cover of the book The Danube Swabians by
Cover of the book The Supplément to the Encyclopédie by
Cover of the book e-Democracy by
Cover of the book Geospatial Analysis of Environmental Health by
Cover of the book Body, Mind, and Method by
Cover of the book Climate Change and Food Security by
Cover of the book Honoré Fabri and the Concept of Impetus: A Bridge between Conceptual Frameworks by
Cover of the book Cholera and the Ecology of Vibrio cholerae by
Cover of the book Clinical Urology Illustrated by
Cover of the book The Soils of the Philippines by
Cover of the book Value Functions for Environmental Management by
Cover of the book Moving the Equity Agenda Forward by
Cover of the book Land use planning and remote sensing by
Cover of the book The Biology of Happiness by
Cover of the book From the Universities to the Marketplace: The Business Ethics Journey by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy