A Computational Non-commutative Geometry Program for Disordered Topological Insulators

Nonfiction, Science & Nature, Science, Physics, Solid State Physics, Mathematical Physics
Cover of the book A Computational Non-commutative Geometry Program for Disordered Topological Insulators by Emil Prodan, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Emil Prodan ISBN: 9783319550237
Publisher: Springer International Publishing Publication: March 17, 2017
Imprint: Springer Language: English
Author: Emil Prodan
ISBN: 9783319550237
Publisher: Springer International Publishing
Publication: March 17, 2017
Imprint: Springer
Language: English

This work presents a computational program based on the principles of non-commutative geometry and showcases several applications to topological insulators. Noncommutative geometry has been originally proposed by Jean Bellissard as a theoretical framework for the investigation of homogeneous condensed matter systems. Recently, this approach has been successfully applied to topological insulators, where it facilitated many rigorous results concerning the stability of the topological invariants against disorder.

In the first part of the book the notion of a homogeneous material is introduced and the class of disordered crystals defined together with the classification table, which conjectures all topological phases from this class. The manuscript continues with a discussion of electrons’ dynamics in disordered crystals and the theory of topological invariants in the presence of strong disorder is briefly reviewed. It is shown how all this can be captured in the language of noncommutative geometry using the concept of non-commutative Brillouin torus, and a list of known formulas for various physical response functions is presented. 

In the second part, auxiliary algebras are introduced and a canonical finite-volume approximation of the non-commutative Brillouin torus is developed. Explicit numerical algorithms for computing generic correlation functions are discussed. 

In the third part upper bounds on the numerical errors are derived and it is proved that the canonical-finite volume approximation converges extremely fast to the thermodynamic limit. Convergence tests and various applications concludes the presentation.

The book is intended for graduate students and researchers in numerical and mathematical physics.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This work presents a computational program based on the principles of non-commutative geometry and showcases several applications to topological insulators. Noncommutative geometry has been originally proposed by Jean Bellissard as a theoretical framework for the investigation of homogeneous condensed matter systems. Recently, this approach has been successfully applied to topological insulators, where it facilitated many rigorous results concerning the stability of the topological invariants against disorder.

In the first part of the book the notion of a homogeneous material is introduced and the class of disordered crystals defined together with the classification table, which conjectures all topological phases from this class. The manuscript continues with a discussion of electrons’ dynamics in disordered crystals and the theory of topological invariants in the presence of strong disorder is briefly reviewed. It is shown how all this can be captured in the language of noncommutative geometry using the concept of non-commutative Brillouin torus, and a list of known formulas for various physical response functions is presented. 

In the second part, auxiliary algebras are introduced and a canonical finite-volume approximation of the non-commutative Brillouin torus is developed. Explicit numerical algorithms for computing generic correlation functions are discussed. 

In the third part upper bounds on the numerical errors are derived and it is proved that the canonical-finite volume approximation converges extremely fast to the thermodynamic limit. Convergence tests and various applications concludes the presentation.

The book is intended for graduate students and researchers in numerical and mathematical physics.

More books from Springer International Publishing

Cover of the book Miles' Equation in Random Vibrations by Emil Prodan
Cover of the book Calculus for Computer Graphics by Emil Prodan
Cover of the book Wireless Sensors in Industrial Time-Critical Environments by Emil Prodan
Cover of the book Digital Transformation: Challenges and Opportunities by Emil Prodan
Cover of the book Probabilistic Diophantine Approximation by Emil Prodan
Cover of the book Regenerative Medicine - from Protocol to Patient by Emil Prodan
Cover of the book Remote Sensing Advances for Earth System Science by Emil Prodan
Cover of the book Asymmetric Cell Division in Development, Differentiation and Cancer by Emil Prodan
Cover of the book Parametric and Nonparametric Inference for Statistical Dynamic Shape Analysis with Applications by Emil Prodan
Cover of the book Solidarity in the European Union by Emil Prodan
Cover of the book Supervisory Control of Discrete-Event Systems by Emil Prodan
Cover of the book Managing Knowledge and Innovation for Business Sustainability in Africa by Emil Prodan
Cover of the book Data Analytics for Renewable Energy Integration by Emil Prodan
Cover of the book Managing in a VUCA World by Emil Prodan
Cover of the book Food Security and the Modernisation Pathway in China by Emil Prodan
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy