21st Century Nuclear Hydrogen Research and Development, Production of Hydrogen from Nuclear Energy for the Hydrogen Initiative, Feedstocks, High-Temperature Electrolysis (HTE), Fuel Cycle

Nonfiction, Science & Nature, Science, Biological Sciences, Ecology, Social & Cultural Studies, Political Science, Government, Public Policy
Cover of the book 21st Century Nuclear Hydrogen Research and Development, Production of Hydrogen from Nuclear Energy for the Hydrogen Initiative, Feedstocks, High-Temperature Electrolysis (HTE), Fuel Cycle by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781458037909
Publisher: Progressive Management Publication: February 23, 2011
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781458037909
Publisher: Progressive Management
Publication: February 23, 2011
Imprint: Smashwords Edition
Language: English

The Nuclear Hydrogen Research and Development Plan from the U.S. Department of Energy, Office of Nuclear Energy, describes ongoing plans for demonstrating the production of clean hydrogen fuel from nuclear energy. Hydrogen is abundant in nature but occurs primarily in stable compounds that require significant energy to produce hydrogen for use as a fuel. Hydrogen is an energy carrier, much like electricity, that requires a primary energy source to produce. Domestic energy sources that do not generate greenhouse gases and have the potential to produce hydrogen at costs competitive with gasoline will be essential components of the long-term energy supply. The DOE Hydrogen Program is investigating the potential for all of the practical energy sources for hydrogen production, including: Fossil sources with carbon sequestration (coal and natural gas), Renewable energy sources (solar, wind, and hydroelectric), Biological methods (biomass and biological), Nuclear energy. In the long term, economics and national policy will determine the mix of energy sources that are implemented, and the technologies initially implemented may differ from those ultimately selected for long-term deployment. In any scenario, domestically based, emission-free energy sources will be high priority candidates for further development. Among these primary energy sources, nuclear energy offers great potential for the large-scale production of hydrogen that is virtually emission-free and generated from domestic resources. The production of hydrogen represents a new mission for nuclear energy that is potentially larger than the current mission of emission-free electrical production. To accomplish this goal: Efficient, large-scale production methods suitable for use with advanced nuclear reactors must be demonstrated. The most promising production methods are in the early stages of development. The NHI will develop and demonstrate these hydrogen production methods. Very high temperatures or high-efficiency electricity is required to drive the most promising hydrogen production processes. Advanced nuclear systems must be developed that provide the necessary high heat to enable these processes. The DOE Generation IV Nuclear Systems Initiative (Generation IV) is developing options to address this need with international collaboration. The focus of this effort is the Very High Temperature Reactor (VHTR), which would provide the advanced nuclear heat source for demonstrating nuclear hydrogen and electricity production. The DOE Office of Nuclear Energy, Science, and Technology (NE) is considering a major demonstration project, which would demonstrate the commercial potential of hydrogen production from nuclear energy at a 50 megawatt thermal (MWth) scale by 2017 and provide a basis for industry investment decisions. The Next Generation Nuclear Plant (NGNP) project would develop and demonstrate the VHTR with the most promising hydrogen production processes developed by the Nuclear Hydrogen Initiative. For hydrogen production from nuclear energy to be sustainable, the technology and policy questions that have limited nuclear energy s contribution to the energy supply must also be addressed. Advanced reactor systems that are passively safe, more efficient, and demonstrably cost effective are essential to the wider public acceptance of the nuclear role. The advantage of more efficient fuel cycles that minimize waste volumes, toxicity, and proliferation concerns must be considered.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The Nuclear Hydrogen Research and Development Plan from the U.S. Department of Energy, Office of Nuclear Energy, describes ongoing plans for demonstrating the production of clean hydrogen fuel from nuclear energy. Hydrogen is abundant in nature but occurs primarily in stable compounds that require significant energy to produce hydrogen for use as a fuel. Hydrogen is an energy carrier, much like electricity, that requires a primary energy source to produce. Domestic energy sources that do not generate greenhouse gases and have the potential to produce hydrogen at costs competitive with gasoline will be essential components of the long-term energy supply. The DOE Hydrogen Program is investigating the potential for all of the practical energy sources for hydrogen production, including: Fossil sources with carbon sequestration (coal and natural gas), Renewable energy sources (solar, wind, and hydroelectric), Biological methods (biomass and biological), Nuclear energy. In the long term, economics and national policy will determine the mix of energy sources that are implemented, and the technologies initially implemented may differ from those ultimately selected for long-term deployment. In any scenario, domestically based, emission-free energy sources will be high priority candidates for further development. Among these primary energy sources, nuclear energy offers great potential for the large-scale production of hydrogen that is virtually emission-free and generated from domestic resources. The production of hydrogen represents a new mission for nuclear energy that is potentially larger than the current mission of emission-free electrical production. To accomplish this goal: Efficient, large-scale production methods suitable for use with advanced nuclear reactors must be demonstrated. The most promising production methods are in the early stages of development. The NHI will develop and demonstrate these hydrogen production methods. Very high temperatures or high-efficiency electricity is required to drive the most promising hydrogen production processes. Advanced nuclear systems must be developed that provide the necessary high heat to enable these processes. The DOE Generation IV Nuclear Systems Initiative (Generation IV) is developing options to address this need with international collaboration. The focus of this effort is the Very High Temperature Reactor (VHTR), which would provide the advanced nuclear heat source for demonstrating nuclear hydrogen and electricity production. The DOE Office of Nuclear Energy, Science, and Technology (NE) is considering a major demonstration project, which would demonstrate the commercial potential of hydrogen production from nuclear energy at a 50 megawatt thermal (MWth) scale by 2017 and provide a basis for industry investment decisions. The Next Generation Nuclear Plant (NGNP) project would develop and demonstrate the VHTR with the most promising hydrogen production processes developed by the Nuclear Hydrogen Initiative. For hydrogen production from nuclear energy to be sustainable, the technology and policy questions that have limited nuclear energy s contribution to the energy supply must also be addressed. Advanced reactor systems that are passively safe, more efficient, and demonstrably cost effective are essential to the wider public acceptance of the nuclear role. The advantage of more efficient fuel cycles that minimize waste volumes, toxicity, and proliferation concerns must be considered.

More books from Progressive Management

Cover of the book The United States Army Air Arm: April 1861 to April 1917, Wright Brothers, Curtiss and Burgess Airplanes, Air Fatalities, Balloons, Airships, Early Planes, Signal Corps, Aviation School by Progressive Management
Cover of the book 1776: A Critical Time in the American Revolution: Initiative and Leadership of George Washington, Continental Congress, American and British Forces, Strategic Setting, Long Island and Trenton Battles by Progressive Management
Cover of the book The Politics of Naval Innovation: Studies of Historical Cases of How Technologically Advanced Systems Went From the Drawing Board to the Fleet, Tomahawk Cruise Missile, AEGIS Combat System by Progressive Management
Cover of the book Science in Flux: NASA's Nuclear Program at Plum Brook Station, 1955 - 2005 (NASA SP-2006-4317) - Nuclear Rockets, NERVA, Atomic Airplanes, Aircraft Nuclear Propulsion by Progressive Management
Cover of the book Apollo and America's Moon Landing Program - Oral Histories of Managers, Engineers, and Workers (Set 6) Brock Stone, Ernst Stuhlinger, von Ehrenfried by Progressive Management
Cover of the book Countering the Hidden Hand: A Study of Iranian Influence in Iraq - Daesh, ISIS, Social Network Analysis of Iraqi Defense, al-Jubouri Tribe, Islamic State, Social Movement Theory, Irregular Warfare by Progressive Management
Cover of the book 21st Century FEMA Study Course: Emergency Support Function #9 Search and Rescue (IS-809) - Search and Rescue (SAR), Urban (US+R), Coast Guard, Structural Collapse by Progressive Management
Cover of the book 21st Century Adult Cancer Sourcebook: Gestational Trophoblastic Tumors, Hydatidiform Mole, Choriocarcinoma, GTD, GTT, GTN, PSTT - Clinical Data for Patients, Families, and Physicians by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: The Operations Process - 2012 Army Doctrine Reference Publication ADRP 5-0, Planning, Preparing, Executing (Professional Format Series) by Progressive Management
Cover of the book The American Civil War: U.S. Marines in Battle Fort Fisher, December 1864-January 1865 -War Between the States, Armstrong Gun, USS New Ironsides, Cape Fear by Progressive Management
Cover of the book Marshall Center Reports: Terrorism, WMD, NATO and Transatlantic Relations, Rumsfeld's Transformation Vision, Jihadist Communications Techniques, Bases in Romania and Bulgaria by Progressive Management
Cover of the book They Served Here: Thirty-Three Maxwell Men - Maxwell Air Force Base, Claire Chennault, Clark Gable, Glenn Miller, Henry Hugh Shelton, Hoyt Vandenberg, Curtis LeMay by Progressive Management
Cover of the book A Historic Context for the African-American Military Experience: Before the Civil War, Blacks in Union and Confederate Army, Buffalo Soldier, Scouts, Spanish-American War, World War I and II by Progressive Management
Cover of the book Personnel Replacement Operations During Operations Desert Storm and Desert Shield: Interviews to Assess Theater Replacements in the First Gulf War in Iraq, Doctrinal Publications and Echelon by Progressive Management
Cover of the book The Punitive Expedition into Mexico 1916: Political - Military Insights, President Wilson and the Response to Pancho Villa's Raid on New Mexico, General Pershing, Mexican Revolution by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy