Thermal Stress and Strain in Microelectronics Packaging

Nonfiction, Science & Nature, Technology, Electronics, Science
Cover of the book Thermal Stress and Strain in Microelectronics Packaging by , Springer US
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781468477672
Publisher: Springer US Publication: December 6, 2012
Imprint: Springer Language: English
Author:
ISBN: 9781468477672
Publisher: Springer US
Publication: December 6, 2012
Imprint: Springer
Language: English

Microelectronics packaging and interconnection have experienced exciting growth stimulated by the recognition that systems, not just silicon, provide the solution to evolving applications. In order to have a high density/ performance/yield/quality/reliability, low cost, and light weight system, a more precise understanding of the system behavior is required. Mechanical and thermal phenomena are among the least understood and most complex of the many phenomena encountered in microelectronics packaging systems and are found on the critical path of neatly every design and process in the electronics industry. The last decade has witnessed an explosive growth in the research and development efforts devoted to determining the mechanical and thermal behaviors of microelectronics packaging. With the advance of very large scale integration technologies, thousands to tens of thousands of devices can be fabricated on a silicon chip. At the same time, demands to further reduce packaging signal delay and increase packaging density between communicat­ ing circuits have led to the use of very high power dissipation single-chip modules and multi-chip modules. The result of these developments has been a rapid growth in module level heat flux within the personal, workstation, midrange, mainframe, and super computers. Thus, thermal (temperature, stress, and strain) management is vital for microelectronics packaging designs and analyses. How to determine the temperature distribution in the elec­ tronics components and systems is outside the scope of this book, which focuses on the determination of stress and strain distributions in the electronics packaging.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Microelectronics packaging and interconnection have experienced exciting growth stimulated by the recognition that systems, not just silicon, provide the solution to evolving applications. In order to have a high density/ performance/yield/quality/reliability, low cost, and light weight system, a more precise understanding of the system behavior is required. Mechanical and thermal phenomena are among the least understood and most complex of the many phenomena encountered in microelectronics packaging systems and are found on the critical path of neatly every design and process in the electronics industry. The last decade has witnessed an explosive growth in the research and development efforts devoted to determining the mechanical and thermal behaviors of microelectronics packaging. With the advance of very large scale integration technologies, thousands to tens of thousands of devices can be fabricated on a silicon chip. At the same time, demands to further reduce packaging signal delay and increase packaging density between communicat­ ing circuits have led to the use of very high power dissipation single-chip modules and multi-chip modules. The result of these developments has been a rapid growth in module level heat flux within the personal, workstation, midrange, mainframe, and super computers. Thus, thermal (temperature, stress, and strain) management is vital for microelectronics packaging designs and analyses. How to determine the temperature distribution in the elec­ tronics components and systems is outside the scope of this book, which focuses on the determination of stress and strain distributions in the electronics packaging.

More books from Springer US

Cover of the book Chronic Aortic Regurgitation by
Cover of the book Asperger Syndrome by
Cover of the book Preventing Youth Problems by
Cover of the book The A-Z Reference Book of Childhood Conditions by
Cover of the book Neurotoxic Factors in Parkinson’s Disease and Related Disorders by
Cover of the book Population and family in the Low Countries II by
Cover of the book RNA Interference from Biology to Therapeutics by
Cover of the book Genetic Engineering by
Cover of the book Molecular Pathology of Endocrine Diseases by
Cover of the book Ischemic Preconditioning: The Concept of Endogenous Cardioprotection by
Cover of the book Sharing it all by
Cover of the book Networks, Alliances and Partnerships in the Innovation Process by
Cover of the book Artificial Intelligence & Expert Systems Sourcebook by
Cover of the book Comparative, Maternal, and Epidemiologic Aspects by
Cover of the book Retinoblastoma by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy