Thermal Energy Storage with Phase Change Materials

A Literature Review of Applications for Buildings Materials

Nonfiction, Science & Nature, Technology, Material Science, Engineering, Civil
Cover of the book Thermal Energy Storage with Phase Change Materials by João M.P.Q. Delgado, Joana C. Martinho, Ana Vaz Sá, Ana S. Guimarães, Vitor Abrantes, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: João M.P.Q. Delgado, Joana C. Martinho, Ana Vaz Sá, Ana S. Guimarães, Vitor Abrantes ISBN: 9783319974996
Publisher: Springer International Publishing Publication: August 9, 2018
Imprint: Springer Language: English
Author: João M.P.Q. Delgado, Joana C. Martinho, Ana Vaz Sá, Ana S. Guimarães, Vitor Abrantes
ISBN: 9783319974996
Publisher: Springer International Publishing
Publication: August 9, 2018
Imprint: Springer
Language: English

This short book provides an update on various methods for incorporating phase changing materials (PCMs) into building structures. It discusses previous research into optimizing the integration of PCMs into surrounding walls (gypsum board and interior plaster products), trombe walls, ceramic floor tiles, concrete elements (walls and pavements), windows, concrete and brick masonry, underfloor heating, ceilings, thermal insulation and furniture an indoor appliances.

Based on the phase change state, PCMs fall into three groups: solid–solid PCMs, solid–liquid PCMs and liquid–gas PCMs. Of these the solid–liquid PCMs, which include organic PCMs, inorganic PCMs and eutectics, are suitable for thermal energy storage.

The process of selecting an appropriate PCM is extremely complex, but crucial for thermal energy storage. The potential PCM should have a suitable melting temperature, and the desirable heat of fusion and thermal conductivity specified by the practical application. Thus, the methods of measuring the thermal properties of PCMs are key.

With suitable PCMs and the correct incorporation method, latent heat thermal energy storage (LHTES) can be economically efficient for heating and cooling buildings. However, several problems need to be tackled before LHTES can reliably and practically be applied.

 

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This short book provides an update on various methods for incorporating phase changing materials (PCMs) into building structures. It discusses previous research into optimizing the integration of PCMs into surrounding walls (gypsum board and interior plaster products), trombe walls, ceramic floor tiles, concrete elements (walls and pavements), windows, concrete and brick masonry, underfloor heating, ceilings, thermal insulation and furniture an indoor appliances.

Based on the phase change state, PCMs fall into three groups: solid–solid PCMs, solid–liquid PCMs and liquid–gas PCMs. Of these the solid–liquid PCMs, which include organic PCMs, inorganic PCMs and eutectics, are suitable for thermal energy storage.

The process of selecting an appropriate PCM is extremely complex, but crucial for thermal energy storage. The potential PCM should have a suitable melting temperature, and the desirable heat of fusion and thermal conductivity specified by the practical application. Thus, the methods of measuring the thermal properties of PCMs are key.

With suitable PCMs and the correct incorporation method, latent heat thermal energy storage (LHTES) can be economically efficient for heating and cooling buildings. However, several problems need to be tackled before LHTES can reliably and practically be applied.

 

More books from Springer International Publishing

Cover of the book Youth in Saudi Arabia by João M.P.Q. Delgado, Joana C. Martinho, Ana Vaz Sá, Ana S. Guimarães, Vitor Abrantes
Cover of the book Variational Methods in Nonlinear Field Equations by João M.P.Q. Delgado, Joana C. Martinho, Ana Vaz Sá, Ana S. Guimarães, Vitor Abrantes
Cover of the book Aniridia by João M.P.Q. Delgado, Joana C. Martinho, Ana Vaz Sá, Ana S. Guimarães, Vitor Abrantes
Cover of the book Research and Development in Intelligent Systems XXXII by João M.P.Q. Delgado, Joana C. Martinho, Ana Vaz Sá, Ana S. Guimarães, Vitor Abrantes
Cover of the book Finding One’s Way Through Wittgenstein’s Philosophical Investigations by João M.P.Q. Delgado, Joana C. Martinho, Ana Vaz Sá, Ana S. Guimarães, Vitor Abrantes
Cover of the book Israel’s Invisible Negev Bedouin by João M.P.Q. Delgado, Joana C. Martinho, Ana Vaz Sá, Ana S. Guimarães, Vitor Abrantes
Cover of the book Modelling and Simulation of Diffusive Processes by João M.P.Q. Delgado, Joana C. Martinho, Ana Vaz Sá, Ana S. Guimarães, Vitor Abrantes
Cover of the book Intelligent Data Analysis and Applications by João M.P.Q. Delgado, Joana C. Martinho, Ana Vaz Sá, Ana S. Guimarães, Vitor Abrantes
Cover of the book Discrete Biochronological Time Scales by João M.P.Q. Delgado, Joana C. Martinho, Ana Vaz Sá, Ana S. Guimarães, Vitor Abrantes
Cover of the book Domestication of Radiata Pine by João M.P.Q. Delgado, Joana C. Martinho, Ana Vaz Sá, Ana S. Guimarães, Vitor Abrantes
Cover of the book Visualization of Conventional and Combusting Subsonic Jet Instabilities by João M.P.Q. Delgado, Joana C. Martinho, Ana Vaz Sá, Ana S. Guimarães, Vitor Abrantes
Cover of the book Staging Organization by João M.P.Q. Delgado, Joana C. Martinho, Ana Vaz Sá, Ana S. Guimarães, Vitor Abrantes
Cover of the book Modeling Innovation Sustainability and Technologies by João M.P.Q. Delgado, Joana C. Martinho, Ana Vaz Sá, Ana S. Guimarães, Vitor Abrantes
Cover of the book Taxation in European Union by João M.P.Q. Delgado, Joana C. Martinho, Ana Vaz Sá, Ana S. Guimarães, Vitor Abrantes
Cover of the book Performing Arts Medicine in Clinical Practice by João M.P.Q. Delgado, Joana C. Martinho, Ana Vaz Sá, Ana S. Guimarães, Vitor Abrantes
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy