Theory and Principled Methods for the Design of Metaheuristics

Nonfiction, Computers, Advanced Computing, Artificial Intelligence, Computer Science, General Computing
Cover of the book Theory and Principled Methods for the Design of Metaheuristics by , Springer Berlin Heidelberg
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783642332067
Publisher: Springer Berlin Heidelberg Publication: December 19, 2013
Imprint: Springer Language: English
Author:
ISBN: 9783642332067
Publisher: Springer Berlin Heidelberg
Publication: December 19, 2013
Imprint: Springer
Language: English

Metaheuristics, and evolutionary algorithms in particular, are known to provide efficient, adaptable solutions for many real-world problems, but the often informal way in which they are defined and applied has led to misconceptions, and even successful applications are sometimes the outcome of trial and error. Ideally, theoretical studies should explain when and why metaheuristics work, but the challenge is huge: mathematical analysis requires significant effort even for simple scenarios and real-life problems are usually quite complex.

 

In this book the editors establish a bridge between theory and practice, presenting principled methods that incorporate problem knowledge in evolutionary algorithms and other metaheuristics. The book consists of 11 chapters dealing with the following topics: theoretical results that show what is not possible, an assessment of unsuccessful lines of empirical research; methods for rigorously defining the appropriate scope of problems while acknowledging the compromise between the class of problems to which a search algorithm is applied and its overall expected performance; the top-down principled design of search algorithms, in particular showing that it is possible to design algorithms that are provably good for some rigorously defined classes; and, finally, principled practice, that is reasoned and systematic approaches to setting up experiments, metaheuristic adaptation to specific problems, and setting parameters.

 

With contributions by some of the leading researchers in this domain, this book will be of significant value to scientists, practitioners, and graduate students in the areas of evolutionary computing, metaheuristics, and computational intelligence.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Metaheuristics, and evolutionary algorithms in particular, are known to provide efficient, adaptable solutions for many real-world problems, but the often informal way in which they are defined and applied has led to misconceptions, and even successful applications are sometimes the outcome of trial and error. Ideally, theoretical studies should explain when and why metaheuristics work, but the challenge is huge: mathematical analysis requires significant effort even for simple scenarios and real-life problems are usually quite complex.

 

In this book the editors establish a bridge between theory and practice, presenting principled methods that incorporate problem knowledge in evolutionary algorithms and other metaheuristics. The book consists of 11 chapters dealing with the following topics: theoretical results that show what is not possible, an assessment of unsuccessful lines of empirical research; methods for rigorously defining the appropriate scope of problems while acknowledging the compromise between the class of problems to which a search algorithm is applied and its overall expected performance; the top-down principled design of search algorithms, in particular showing that it is possible to design algorithms that are provably good for some rigorously defined classes; and, finally, principled practice, that is reasoned and systematic approaches to setting up experiments, metaheuristic adaptation to specific problems, and setting parameters.

 

With contributions by some of the leading researchers in this domain, this book will be of significant value to scientists, practitioners, and graduate students in the areas of evolutionary computing, metaheuristics, and computational intelligence.

More books from Springer Berlin Heidelberg

Cover of the book Ellipsometry at the Nanoscale by
Cover of the book Pathology of Solid Organ Transplantation by
Cover of the book Kreiselpumpen by
Cover of the book Fibrin Sealant in Operative Medicine by
Cover of the book Macroeconomic Analysis of Monetary Unions by
Cover of the book Emmy Noether, die Noether-Schule und die moderne Algebra by
Cover of the book Quantitative Thin-Layer Chromatography by
Cover of the book Reconstruction of Upper Cervical Spine and Craniovertebral Junction by
Cover of the book Fossil Algae by
Cover of the book Angsthasen, Albträumer und Alltagshelden by
Cover of the book EGF Receptor in Tumor Growth and Progression by
Cover of the book Aero and Vibroacoustics of Automotive Turbochargers by
Cover of the book Respiratory System by
Cover of the book Legal Strategies by
Cover of the book Angiogenesis Inhibition by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy