Study on Fabrication and Performance of Metal-Supported Solid Oxide Fuel Cells

Nonfiction, Science & Nature, Technology, Material Science, Power Resources
Cover of the book Study on Fabrication and Performance of Metal-Supported Solid Oxide Fuel Cells by Yucun Zhou, Springer Singapore
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Yucun Zhou ISBN: 9789811066177
Publisher: Springer Singapore Publication: October 26, 2017
Imprint: Springer Language: English
Author: Yucun Zhou
ISBN: 9789811066177
Publisher: Springer Singapore
Publication: October 26, 2017
Imprint: Springer
Language: English

This book highlights the development of novel metal-supported solid oxide fuel cells (MS-SOFCs). It describes the metal-supported solid oxide fuel cells (MS-SOFCs) that consist of a microporous stainless steel support, nanoporous electrode composites and a thin ceramic electrolyte using the “tape casting-sintering-infiltrating” method. Further, it investigates the reaction kinetics of the fuel cells’ electrodes, structure–performance relationship and degradation mechanism. By optimizing the electrode materials, preparation process for the fuel cells, and nano-micro structure of the electrode, the resulting MS-SOFCs demonstrated (1) great output power densities at low temperatures, e.g., 1.02 W cm-2 at 600°C, when operating in humidified hydrogen fuels and air oxidants; (2) excellent long-term stability, e.g., a degradation rate of 1.3% kh-1 when measured at 650°C and 0.9 A cm-2 for 1500 h. The design presented offers a promising pathway for the development of low-cost, high power-density and long-term-stable SOFCs for energy conversion.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book highlights the development of novel metal-supported solid oxide fuel cells (MS-SOFCs). It describes the metal-supported solid oxide fuel cells (MS-SOFCs) that consist of a microporous stainless steel support, nanoporous electrode composites and a thin ceramic electrolyte using the “tape casting-sintering-infiltrating” method. Further, it investigates the reaction kinetics of the fuel cells’ electrodes, structure–performance relationship and degradation mechanism. By optimizing the electrode materials, preparation process for the fuel cells, and nano-micro structure of the electrode, the resulting MS-SOFCs demonstrated (1) great output power densities at low temperatures, e.g., 1.02 W cm-2 at 600°C, when operating in humidified hydrogen fuels and air oxidants; (2) excellent long-term stability, e.g., a degradation rate of 1.3% kh-1 when measured at 650°C and 0.9 A cm-2 for 1500 h. The design presented offers a promising pathway for the development of low-cost, high power-density and long-term-stable SOFCs for energy conversion.

More books from Springer Singapore

Cover of the book Smart Economy in Smart African Cities by Yucun Zhou
Cover of the book Before the Age of Prejudice by Yucun Zhou
Cover of the book Contemporary Chinese Diasporas by Yucun Zhou
Cover of the book Silviculture of South Asian Priority Bamboos by Yucun Zhou
Cover of the book Construction Quality and the Economy by Yucun Zhou
Cover of the book Bio-Inspired Collaborative Intelligent Control and Optimization by Yucun Zhou
Cover of the book The Market for Learning by Yucun Zhou
Cover of the book Computer Vision, Pattern Recognition, Image Processing, and Graphics by Yucun Zhou
Cover of the book Applied Metallurgy and Corrosion Control by Yucun Zhou
Cover of the book Organelle Contact Sites by Yucun Zhou
Cover of the book Advanced Optimization by Nature-Inspired Algorithms by Yucun Zhou
Cover of the book Notes on Projectile Impact Analyses by Yucun Zhou
Cover of the book China's Energy Efficiency and Conservation by Yucun Zhou
Cover of the book Ship Construction and Welding by Yucun Zhou
Cover of the book Diabetes Mellitus in 21st Century by Yucun Zhou
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy