Recent Advances in Estimating Nonlinear Models

With Applications in Economics and Finance

Business & Finance, Economics, Econometrics, Statistics
Cover of the book Recent Advances in Estimating Nonlinear Models by , Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781461480600
Publisher: Springer New York Publication: September 24, 2013
Imprint: Springer Language: English
Author:
ISBN: 9781461480600
Publisher: Springer New York
Publication: September 24, 2013
Imprint: Springer
Language: English

Nonlinear models have been used extensively in the areas of economics and finance. Recent literature on the topic has shown that a large number of series exhibit nonlinear dynamics as opposed to the alternative--linear dynamics. Incorporating these concepts involves deriving and estimating nonlinear time series models, and these have typically taken the form of Threshold Autoregression (TAR) models, Exponential Smooth Transition (ESTAR) models, and Markov Switching (MS) models, among several others. This edited volume provides a timely overview of nonlinear estimation techniques, offering new methods and insights into nonlinear time series analysis. It features cutting-edge research from leading academics in economics, finance, and business management, and will focus on such topics as Zero-Information-Limit-Conditions, using Markov Switching Models to analyze economics series, and how best to distinguish between competing nonlinear models. Principles and techniques in this book will appeal to econometricians, finance professors teaching quantitative finance, researchers, and graduate students interested in learning how to apply advances in nonlinear time series modeling to solve complex problems in economics and finance.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Nonlinear models have been used extensively in the areas of economics and finance. Recent literature on the topic has shown that a large number of series exhibit nonlinear dynamics as opposed to the alternative--linear dynamics. Incorporating these concepts involves deriving and estimating nonlinear time series models, and these have typically taken the form of Threshold Autoregression (TAR) models, Exponential Smooth Transition (ESTAR) models, and Markov Switching (MS) models, among several others. This edited volume provides a timely overview of nonlinear estimation techniques, offering new methods and insights into nonlinear time series analysis. It features cutting-edge research from leading academics in economics, finance, and business management, and will focus on such topics as Zero-Information-Limit-Conditions, using Markov Switching Models to analyze economics series, and how best to distinguish between competing nonlinear models. Principles and techniques in this book will appeal to econometricians, finance professors teaching quantitative finance, researchers, and graduate students interested in learning how to apply advances in nonlinear time series modeling to solve complex problems in economics and finance.

More books from Springer New York

Cover of the book Elliptic Curves and Arithmetic Invariants by
Cover of the book Flow Boiling in Microgap Channels by
Cover of the book Gender and Sexual Identity by
Cover of the book Contextual Development Economics by
Cover of the book The Perioperative Medicine Consult Handbook by
Cover of the book Stochastic Orders in Reliability and Risk by
Cover of the book Philosophy of Psychology by
Cover of the book Airbreathing Propulsion by
Cover of the book Institutional Analysis and Praxis by
Cover of the book Tumor Metabolome Targeting and Drug Development by
Cover of the book Energy and the Wealth of Nations by
Cover of the book Morphology, Phonology, and Aphasia by
Cover of the book Exploring Ancient Skies by
Cover of the book China’s Strategy in Space by
Cover of the book Lithium-Ion Batteries Hazard and Use Assessment by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy