Piezoresistive Effect of p-Type Single Crystalline 3C-SiC

Silicon Carbide Mechanical Sensors for Harsh Environments

Nonfiction, Science & Nature, Technology, Material Science, Electronics
Cover of the book Piezoresistive Effect of p-Type Single Crystalline 3C-SiC by Hoang-Phuong Phan, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Hoang-Phuong Phan ISBN: 9783319555447
Publisher: Springer International Publishing Publication: April 6, 2017
Imprint: Springer Language: English
Author: Hoang-Phuong Phan
ISBN: 9783319555447
Publisher: Springer International Publishing
Publication: April 6, 2017
Imprint: Springer
Language: English

This book addresses the piezoresistance in p-type 3C-SiC, which it investigates using experimental characterization and theoretical analysis. The gauge factor, the piezoresistive coefficients in two-terminal and four-terminal resistors, the comparison between single crystalline and nanocrystalline SiC, along with the temperature dependence of the piezoresistive effect in p-type 3C-SiC are also discussed. 

Silicon carbide (SiC) is an excellent material for electronic devices operating at high temperatures, thanks to its large energy band gap, superior mechanical properties and extreme chemical inertness. Among the numerous polytypes of SiC, the cubic single crystal, which is also well known as 3C-SiC, is the most promising platform for microelectromechanical (MEMS) applications, as it can be epitaxially grown on an Si substrate with diameters of up to several hundred millimeters. This feature makes 3C-SiC compatible with the conventional Si-based micro/nano processing and also cuts down the cost of SiC wafers. 

The investigation into the piezoresistive effect in 3C-SiC is of significant interest for the development of mechanical transducers such as pressure sensors and strain sensors used for controlling combustion and deep well drilling. Although a number of studies have focused on the piezoresistive effect in n-type 3C-SiC, 4H-SiC and 6H-SiC, comparatively little attention has been paid to piezoresistance in p-type 3C-SiC. 

In addition, the book investigates the piezoresistive effect of top-down fabricated SiC nanowires, revealing a high degree of sensitivity in nanowires employing an innovative nano strain-amplifier. The large gauge factors of the p-type 3C-SiC at both room temperature and high temperatures found here indicate that this polytype could be suitable for the development of mechanical sensing devices operating in harsh environments with high temperatures.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book addresses the piezoresistance in p-type 3C-SiC, which it investigates using experimental characterization and theoretical analysis. The gauge factor, the piezoresistive coefficients in two-terminal and four-terminal resistors, the comparison between single crystalline and nanocrystalline SiC, along with the temperature dependence of the piezoresistive effect in p-type 3C-SiC are also discussed. 

Silicon carbide (SiC) is an excellent material for electronic devices operating at high temperatures, thanks to its large energy band gap, superior mechanical properties and extreme chemical inertness. Among the numerous polytypes of SiC, the cubic single crystal, which is also well known as 3C-SiC, is the most promising platform for microelectromechanical (MEMS) applications, as it can be epitaxially grown on an Si substrate with diameters of up to several hundred millimeters. This feature makes 3C-SiC compatible with the conventional Si-based micro/nano processing and also cuts down the cost of SiC wafers. 

The investigation into the piezoresistive effect in 3C-SiC is of significant interest for the development of mechanical transducers such as pressure sensors and strain sensors used for controlling combustion and deep well drilling. Although a number of studies have focused on the piezoresistive effect in n-type 3C-SiC, 4H-SiC and 6H-SiC, comparatively little attention has been paid to piezoresistance in p-type 3C-SiC. 

In addition, the book investigates the piezoresistive effect of top-down fabricated SiC nanowires, revealing a high degree of sensitivity in nanowires employing an innovative nano strain-amplifier. The large gauge factors of the p-type 3C-SiC at both room temperature and high temperatures found here indicate that this polytype could be suitable for the development of mechanical sensing devices operating in harsh environments with high temperatures.

More books from Springer International Publishing

Cover of the book New Directions in Empirical Translation Process Research by Hoang-Phuong Phan
Cover of the book Using Energy Crops for Biofuels or Food: The Choice by Hoang-Phuong Phan
Cover of the book Canonical Correlation Analysis in Speech Enhancement by Hoang-Phuong Phan
Cover of the book The Theory of Info-Dynamics: Rational Foundations of Information-Knowledge Dynamics by Hoang-Phuong Phan
Cover of the book Temperature Calculation in Fire Safety Engineering by Hoang-Phuong Phan
Cover of the book Biomedical Applications Based on Natural and Artificial Computing by Hoang-Phuong Phan
Cover of the book Advances in Web-Based Learning – ICWL 2017 by Hoang-Phuong Phan
Cover of the book Regenerative Medicine - from Protocol to Patient by Hoang-Phuong Phan
Cover of the book Green Materials Engineering by Hoang-Phuong Phan
Cover of the book Women's Networks in Medieval France by Hoang-Phuong Phan
Cover of the book Spanish Regional Unemployment by Hoang-Phuong Phan
Cover of the book Nanooncology by Hoang-Phuong Phan
Cover of the book Advances in Swarm Intelligence by Hoang-Phuong Phan
Cover of the book Counterterrorism and Cybersecurity by Hoang-Phuong Phan
Cover of the book Community Policing - A European Perspective by Hoang-Phuong Phan
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy