Perspectives in Shape Analysis

Nonfiction, Science & Nature, Mathematics, Geometry, Computers, Application Software, Computer Graphics
Cover of the book Perspectives in Shape Analysis by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319247267
Publisher: Springer International Publishing Publication: September 30, 2016
Imprint: Springer Language: English
Author:
ISBN: 9783319247267
Publisher: Springer International Publishing
Publication: September 30, 2016
Imprint: Springer
Language: English

This book presents recent advances in the field of shape analysis. Written by experts in the fields of continuous-scale shape analysis, discrete shape analysis and sparsity, and numerical computing who hail from different communities, it provides a unique view of the topic from a broad range of perspectives.

Over the last decade, it has become increasingly affordable to digitize shape information at high resolution. Yet analyzing and processing this data remains challenging because of the large amount of data involved, and because modern applications such as human-computer interaction require real-time processing. Meeting these challenges requires interdisciplinary approaches that combine concepts from a variety of research areas, including numerical computing, differential geometry, deformable shape modeling, sparse data representation, and machine learning. On the algorithmic side, many shape analysis tasks are modeled using partial differential equations, which can be solved using tools from the field of numerical computing. The fields of differential geometry and deformable shape modeling have recently begun to influence shape analysis methods. Furthermore, tools from the field of sparse representations, which aim to describe input data using a compressible representation with respect to a set of carefully selected basic elements, have the potential to significantly reduce the amount of data that needs to be processed in shape analysis tasks. The related field of machine learning offers similar potential.

The goal of the Dagstuhl Seminar on New Perspectives in Shape Analysis held in February 2014 was to address these challenges with the help of the latest tools related to geometric, algorithmic and numerical concepts and to bring together researchers at the forefront of shape analysis who can work together to identify open problems and novel solutions. The book resulting from this seminar will appeal to researchers in the field of shape analysis, image and vision, from those who want to become more familiar with the field, to experts interested in learning about the latest advances.​

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book presents recent advances in the field of shape analysis. Written by experts in the fields of continuous-scale shape analysis, discrete shape analysis and sparsity, and numerical computing who hail from different communities, it provides a unique view of the topic from a broad range of perspectives.

Over the last decade, it has become increasingly affordable to digitize shape information at high resolution. Yet analyzing and processing this data remains challenging because of the large amount of data involved, and because modern applications such as human-computer interaction require real-time processing. Meeting these challenges requires interdisciplinary approaches that combine concepts from a variety of research areas, including numerical computing, differential geometry, deformable shape modeling, sparse data representation, and machine learning. On the algorithmic side, many shape analysis tasks are modeled using partial differential equations, which can be solved using tools from the field of numerical computing. The fields of differential geometry and deformable shape modeling have recently begun to influence shape analysis methods. Furthermore, tools from the field of sparse representations, which aim to describe input data using a compressible representation with respect to a set of carefully selected basic elements, have the potential to significantly reduce the amount of data that needs to be processed in shape analysis tasks. The related field of machine learning offers similar potential.

The goal of the Dagstuhl Seminar on New Perspectives in Shape Analysis held in February 2014 was to address these challenges with the help of the latest tools related to geometric, algorithmic and numerical concepts and to bring together researchers at the forefront of shape analysis who can work together to identify open problems and novel solutions. The book resulting from this seminar will appeal to researchers in the field of shape analysis, image and vision, from those who want to become more familiar with the field, to experts interested in learning about the latest advances.​

More books from Springer International Publishing

Cover of the book Building New Bridges Between Business and Society by
Cover of the book Heat Shock Proteins and Plants by
Cover of the book Photofunctional Layered Materials by
Cover of the book Gastrointestinal Motility Disorders by
Cover of the book Climatic Changes Since 1700 by
Cover of the book Multimedia Tools and Applications for Environmental & Biodiversity Informatics by
Cover of the book Influence and Behavior Analysis in Social Networks and Social Media by
Cover of the book Adaptive and Adaptable Learning by
Cover of the book Complex and Symplectic Geometry by
Cover of the book Design, User Experience, and Usability: Designing Interactions by
Cover of the book International Digital Imaging Correlation Society by
Cover of the book Mathematical and Computational Approaches in Advancing Modern Science and Engineering by
Cover of the book Long-Term Care in Europe by
Cover of the book Internet of Things. IoT Infrastructures by
Cover of the book The Language of Economics by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy