NASA Astronauts on Soyuz: Experience and Lessons for the Future - Working with the Russians from the Apollo-Soyuz Test Project to the Mir Space Station and the International Space Station (ISS)

Nonfiction, Science & Nature, Technology, Aeronautics & Astronautics, Science, Physics, Astrophysics & Space Science
Cover of the book NASA Astronauts on Soyuz: Experience and Lessons for the Future - Working with the Russians from the Apollo-Soyuz Test Project to the Mir Space Station and the International Space Station (ISS) by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781476027203
Publisher: Progressive Management Publication: May 10, 2012
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781476027203
Publisher: Progressive Management
Publication: May 10, 2012
Imprint: Smashwords Edition
Language: English

This official NASA document - converted for accurate flowing-text ebook format reproduction - provides an interesting review of NASA's experience working with the Russians and lessons on astronaut safety assurance of the Soyuz spacecraft. This report on Soyuz history was conceived as a possible analogy relevant to domestic commercial spaceflight vehicles.

The question of how to human-rate new spacecraft has been asked many times throughout the history of human spaceflight. The U. S., Russia, and, now China have each separately and successfully addressed this question. NASA's operational experience with human-rating primarily resides with Mercury, Gemini, Apollo, Space Shuttle, and the International Space Station (ISS). NASA's latest developmental experience includes Constellation, but also encompasses X38, X33, and the Orbital Space Plane.

If domestic commercial crew vehicles are used to transport astronauts to and from space, the Soyuz vehicle would be another relevant example of the methods that could be used to human-rate a spacecraft and how to work with commercial spacecraft providers.

As known from history, the first U.S. astronaut to orbit on a Soyuz spacecraft was Thomas P. Stafford on July 17, 1975, during the Apollo-Soyuz Test Project (ASTP) mission. Norman E. Thagard was the first U.S. astronaut to launch on a Soyuz launch vehicle, Soyuz TM-21, on March 14, 1995, on a flight to the Russian Mir Space Station. This flight was associated with the U.S./Russian - Shuttle/Mir Program. The first Soyuz launched to ISS included astronaut William M. Shepherd, Soyuz TM-31, on October 31, 2000. Prior to this, NASA studied Soyuz as an assured crew return vehicle (ACRV) for Space Station Freedom (SSF) to be launched on the Space Shuttle. Presently, in preparation for Space Shuttle retirement, all U.S. astronauts are being transported to and from ISS in the Russian Soyuz spacecraft, which is launched on the Soyuz launch vehicle.

In the case of Soyuz, NASA's normal assurance practices have had to be adapted. For a variety of external reasons, NASA has taken a "trust but verify" approach to Soyuz and international cargo vehicles. The verify approach was to perform joint safety assurance assessments of the critical spacecraft systems. For Soyuz, NASA's primary assurance was (and continues to be) its long and successful flight history. The other key measure relied on diverse teams of NASA's best technical experts working very closely with their foreign counterparts to understand the essential design, verification, and operational features of Soyuz. Those experts used their personal experiences and NASA's corporate knowledge (in the form of agency, program, center, and other standards) to jointly and independently assess a wide range of topics.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This official NASA document - converted for accurate flowing-text ebook format reproduction - provides an interesting review of NASA's experience working with the Russians and lessons on astronaut safety assurance of the Soyuz spacecraft. This report on Soyuz history was conceived as a possible analogy relevant to domestic commercial spaceflight vehicles.

The question of how to human-rate new spacecraft has been asked many times throughout the history of human spaceflight. The U. S., Russia, and, now China have each separately and successfully addressed this question. NASA's operational experience with human-rating primarily resides with Mercury, Gemini, Apollo, Space Shuttle, and the International Space Station (ISS). NASA's latest developmental experience includes Constellation, but also encompasses X38, X33, and the Orbital Space Plane.

If domestic commercial crew vehicles are used to transport astronauts to and from space, the Soyuz vehicle would be another relevant example of the methods that could be used to human-rate a spacecraft and how to work with commercial spacecraft providers.

As known from history, the first U.S. astronaut to orbit on a Soyuz spacecraft was Thomas P. Stafford on July 17, 1975, during the Apollo-Soyuz Test Project (ASTP) mission. Norman E. Thagard was the first U.S. astronaut to launch on a Soyuz launch vehicle, Soyuz TM-21, on March 14, 1995, on a flight to the Russian Mir Space Station. This flight was associated with the U.S./Russian - Shuttle/Mir Program. The first Soyuz launched to ISS included astronaut William M. Shepherd, Soyuz TM-31, on October 31, 2000. Prior to this, NASA studied Soyuz as an assured crew return vehicle (ACRV) for Space Station Freedom (SSF) to be launched on the Space Shuttle. Presently, in preparation for Space Shuttle retirement, all U.S. astronauts are being transported to and from ISS in the Russian Soyuz spacecraft, which is launched on the Soyuz launch vehicle.

In the case of Soyuz, NASA's normal assurance practices have had to be adapted. For a variety of external reasons, NASA has taken a "trust but verify" approach to Soyuz and international cargo vehicles. The verify approach was to perform joint safety assurance assessments of the critical spacecraft systems. For Soyuz, NASA's primary assurance was (and continues to be) its long and successful flight history. The other key measure relied on diverse teams of NASA's best technical experts working very closely with their foreign counterparts to understand the essential design, verification, and operational features of Soyuz. Those experts used their personal experiences and NASA's corporate knowledge (in the form of agency, program, center, and other standards) to jointly and independently assess a wide range of topics.

More books from Progressive Management

Cover of the book The Revolutionary United Front (RUF) and Child Soldiers During Sierra Leone's Civil War - Use of Drugged Soldiers to Commit Horrific Atrocities During Guerilla War, Involvement of Libya and Gadhafi by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: Tactics in Counterinsurgency - Field Manual 3-24.2 - Tactical Considerations, COIN Operations, Historical Theories (Professional Format Series) by Progressive Management
Cover of the book NASA Human Spaceflight Astronaut Health Research for Exploration and Manned Mars Missions, Risk Report WSN-08, Training Deficiencies, Radiation, Solar Particle Events, CNS and Degenerative Tissue by Progressive Management
Cover of the book World War II Japanese American Internment Reports: Personal Justice Denied, The Complete Official Report of the Commission on Wartime Relocation and Internment of Civilians, Aleuts, Recommendations by Progressive Management
Cover of the book Nanoscience and Nanotechnology: NIST Center for Nanoscale Science and Technology (CNST) Reports - Graphene, Single-Electron Devices (SEDs), Nanowire, Photovoltaic by Progressive Management
Cover of the book The World Wide Military Command and Control System (WWMCCS): Evolution and Effectiveness by Progressive Management
Cover of the book The Mineless Battlespace: Shaping the Future Battlefield without Conventional Landmines - History and Evolution of Landmines, Support for the Ban, Humanitarian Crisis, Doctrines for Alternatives by Progressive Management
Cover of the book Military Autopsy Manual: Concise Illustrated Guide to Techniques and Objectives of Autopsies from the Armed Forces Institute of Pathology, with Organ by Organ Information by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: Flame, Riot Control Agents (RCA) and Herbicide Operations Field Manual - FM 3-11 (Value-Added Professional Format Series) by Progressive Management
Cover of the book 21st Century U.S. Military Documents: Space Air Force Policy Directives and Instructions - Space Launch Operations, Space Test Program (STP), Launch Vehicle Return to Flight by Progressive Management
Cover of the book Evolution of United States Military Landmine Doctrine and Employment: History from World War I and II to Korea and Vietnam Wars, Study Addresses Technological Innovation and Shifts in Doctrine by Progressive Management
Cover of the book Countering the al-Shabaab Insurgency in Somalia: Lessons for U.S. Special Operations Forces - Mogadishu, Somali Terrorism, al-Qaeda, Relations with Ethiopia and Kenya by Progressive Management
Cover of the book The Story of Davis-Monthan Air Force Base 1940: 1976, Strategic Air Command, B-29, B-50, U-2, A-10, Lucky Lady II, Tactical Air Command, F-4C Fighter, Tucson Arizona Community, Aircraft Storage by Progressive Management
Cover of the book Complete Guide to the Kepler Space Telescope Mission and the Search for Habitable Planets and Earth-like Exoplanets: Planet Detection Strategies, Mission History and Accomplishments by Progressive Management
Cover of the book American Armies and Battlefields in Europe: Authoritative History of American Expeditionary Forces in World War I, Great War - Aisne-Marne, St. Mihiel, Meuse-Argonne, Champagne, Paris, Vosges Front by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy