NASA Space Technology Report: Low Cost Robotic Lunar Lander (COMPASS Final Report), Launch Options including SpaceX, Subsystems, Costs and Risks

Nonfiction, Science & Nature, Technology, Aeronautics & Astronautics, Science, Physics, Astrophysics & Space Science
Cover of the book NASA Space Technology Report: Low Cost Robotic Lunar Lander (COMPASS Final Report), Launch Options including SpaceX, Subsystems, Costs and Risks by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781311953001
Publisher: Progressive Management Publication: September 3, 2014
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781311953001
Publisher: Progressive Management
Publication: September 3, 2014
Imprint: Smashwords Edition
Language: English

The goal of this COllaborative Modeling for the Parametric Assessment of Space Systems (COMPASS) session was to use Total Low Cost as the objective function, and design a Robotic Lunar Lander to deliver an unspecified payload (greater than zero) to the lunar surface for the lowest cost. The spacecraft designed as the baseline out of this study was a solar powered robotic lander, launched on a Minotaur V launch vehicle on a direct injection trajectory to the lunar surface. A Star 27 solid rocket motor does lunar capture and performs 88 percent of the descent burn. The Robotic Lunar Lander soft-lands using a hydrazine propulsion system to perform the last 10 percent of the landing maneuver, leaving the descent at a near zero, but not exactly zero, terminal velocity. This low-cost robotic lander delivers 10 kg of science payload instruments to the lunar surface.

1.0 Executive Summary * 2.0 Study Background and Assumptions * 2.1 Introduction * 2.2 Assumptions and Approach * 2.2.1 Survey Starting Points * 2.2.2 Fault Tolerance * 2.3 Growth, Contingency and Margin Policy * 2.4 Mission Description * 2.4.1 Mission Analysis Assumptions * 2.4.2 Main Mission Trajectory Options * 2.4.3 Mission Analysis Event Timeline * 2.4.4 Mission Trajectory Details * 2.5 Small Launch Vehicle Details * 2.5.1 Minotaur * 2.5.2 SpaceX—Alternate Launch Vehicle Option * 2.6 System Design Trade Space: Preliminary Analysis * 2.7 Baseline System Design * 3.0 Baseline Design * 3.1 Top Level Design (MEL and PEL) * 3.1.1 Master Equipment List (MEL) * 3.1.2 Power Equipment List (PEL) * 3.2 System Level Summary * 3.3 Design Concept Drawing and Description * 4.0 Subsystem Breakdown * 4.1 Communications * 4.1.1 Communications Requirements * 4.1.2 Communications Assumptions * 4.1.3 Communications Design and MEL * 4.1.4 Communications Trades * 4.1.5 Communications Analytical Methods * 4.1.6 Communications Risk Inputs * 4.1.7 Communications Recommendation * 4.2 Avionics * 4.2.1 Avionics Requirements * 4.2.2 Avionics Assumptions * 4.2.3 Avionics Design and MEL * 4.2.4 Avionics Trades * 4.2.5 Avionics Analytical Methods * 4.2.6 Avionics Risk Inputs * 4.2.7 Avionics Recommendation * 4.3 Electrical Power System * 4.3.1 Electrical Power Requirements * 4.3.2 Electrical Power Assumptions * 4.3.3 Electrical Power Design and MEL * 4.3.4 Electrical Power Trades * 4.3.5 Electrical Power Analytical Methods * 4.3.6 Electrical Power Risk Inputs * 4.3.7 Electrical Power Recommendation * 4.4 Structures and Mechanisms * 4.4.1 Structures and Mechanisms Requirements * 4.4.2 Structures and Mechanisms Assumptions * 4.4.3 Structures and Mechanisms Design and MEL * 4.4.4 Structures and Mechanisms Trades * 4.4.5 Structures and Mechanisms Analytical Methods * 4.4.6 Structures and Mechanisms Risk Inputs * 4.4.7 Structures and Mechanisms Recommendation * 4.5 Propulsion and Propellant Management * 4.5.1 Propulsion and Propellant Management Requirements * 4.5.2 Propulsion and Propellant Management Assumptions * 4.5.3 Propulsion and Propellant Management Analytical Methods * 4.5.4 Propulsion and Propellant Management Design and MEL * 4.5.5 Propulsion and Propellant Management Trades * 4.5.6 Propulsion and Propellant Management Risk Inputs * 4.5.7 Propulsion and Propellant Management Recommendation * 4.6 Thermal Control * 4.6.1 Thermal Requirements * 4.6.2 Thermal Assumptions * 4.6.3 Thermal Design and MEL * 4.6.4 Thermal Trades * 4.6.5 Thermal Analytical Methods * 4.6.6 Thermal Risk Inputs * 4.6.7 Thermal Recommendation * 5.0 Cost, Risk and Reliability * 5.1 Costing: Baseline Chemical Lunar Lander * 5.2 Cost Modeling Assumptions * 5.3 Cost Modeling Approach * 6.0 Trade Space Iterations * 6.1 Case 1: Off-the-Shelf Chemical Propulsion * 6.2 Case 2: Off-the-Shelf Electric Propulsion * 6.3 Case 3: Advanced Direct Drive Electric Propulsion * Appendix A.—Acronyms and Abbreviations * Appendix B.—Case 1 Rendered Design Drawings * Appendix C.—Study Participants * Bibliography

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The goal of this COllaborative Modeling for the Parametric Assessment of Space Systems (COMPASS) session was to use Total Low Cost as the objective function, and design a Robotic Lunar Lander to deliver an unspecified payload (greater than zero) to the lunar surface for the lowest cost. The spacecraft designed as the baseline out of this study was a solar powered robotic lander, launched on a Minotaur V launch vehicle on a direct injection trajectory to the lunar surface. A Star 27 solid rocket motor does lunar capture and performs 88 percent of the descent burn. The Robotic Lunar Lander soft-lands using a hydrazine propulsion system to perform the last 10 percent of the landing maneuver, leaving the descent at a near zero, but not exactly zero, terminal velocity. This low-cost robotic lander delivers 10 kg of science payload instruments to the lunar surface.

1.0 Executive Summary * 2.0 Study Background and Assumptions * 2.1 Introduction * 2.2 Assumptions and Approach * 2.2.1 Survey Starting Points * 2.2.2 Fault Tolerance * 2.3 Growth, Contingency and Margin Policy * 2.4 Mission Description * 2.4.1 Mission Analysis Assumptions * 2.4.2 Main Mission Trajectory Options * 2.4.3 Mission Analysis Event Timeline * 2.4.4 Mission Trajectory Details * 2.5 Small Launch Vehicle Details * 2.5.1 Minotaur * 2.5.2 SpaceX—Alternate Launch Vehicle Option * 2.6 System Design Trade Space: Preliminary Analysis * 2.7 Baseline System Design * 3.0 Baseline Design * 3.1 Top Level Design (MEL and PEL) * 3.1.1 Master Equipment List (MEL) * 3.1.2 Power Equipment List (PEL) * 3.2 System Level Summary * 3.3 Design Concept Drawing and Description * 4.0 Subsystem Breakdown * 4.1 Communications * 4.1.1 Communications Requirements * 4.1.2 Communications Assumptions * 4.1.3 Communications Design and MEL * 4.1.4 Communications Trades * 4.1.5 Communications Analytical Methods * 4.1.6 Communications Risk Inputs * 4.1.7 Communications Recommendation * 4.2 Avionics * 4.2.1 Avionics Requirements * 4.2.2 Avionics Assumptions * 4.2.3 Avionics Design and MEL * 4.2.4 Avionics Trades * 4.2.5 Avionics Analytical Methods * 4.2.6 Avionics Risk Inputs * 4.2.7 Avionics Recommendation * 4.3 Electrical Power System * 4.3.1 Electrical Power Requirements * 4.3.2 Electrical Power Assumptions * 4.3.3 Electrical Power Design and MEL * 4.3.4 Electrical Power Trades * 4.3.5 Electrical Power Analytical Methods * 4.3.6 Electrical Power Risk Inputs * 4.3.7 Electrical Power Recommendation * 4.4 Structures and Mechanisms * 4.4.1 Structures and Mechanisms Requirements * 4.4.2 Structures and Mechanisms Assumptions * 4.4.3 Structures and Mechanisms Design and MEL * 4.4.4 Structures and Mechanisms Trades * 4.4.5 Structures and Mechanisms Analytical Methods * 4.4.6 Structures and Mechanisms Risk Inputs * 4.4.7 Structures and Mechanisms Recommendation * 4.5 Propulsion and Propellant Management * 4.5.1 Propulsion and Propellant Management Requirements * 4.5.2 Propulsion and Propellant Management Assumptions * 4.5.3 Propulsion and Propellant Management Analytical Methods * 4.5.4 Propulsion and Propellant Management Design and MEL * 4.5.5 Propulsion and Propellant Management Trades * 4.5.6 Propulsion and Propellant Management Risk Inputs * 4.5.7 Propulsion and Propellant Management Recommendation * 4.6 Thermal Control * 4.6.1 Thermal Requirements * 4.6.2 Thermal Assumptions * 4.6.3 Thermal Design and MEL * 4.6.4 Thermal Trades * 4.6.5 Thermal Analytical Methods * 4.6.6 Thermal Risk Inputs * 4.6.7 Thermal Recommendation * 5.0 Cost, Risk and Reliability * 5.1 Costing: Baseline Chemical Lunar Lander * 5.2 Cost Modeling Assumptions * 5.3 Cost Modeling Approach * 6.0 Trade Space Iterations * 6.1 Case 1: Off-the-Shelf Chemical Propulsion * 6.2 Case 2: Off-the-Shelf Electric Propulsion * 6.3 Case 3: Advanced Direct Drive Electric Propulsion * Appendix A.—Acronyms and Abbreviations * Appendix B.—Case 1 Rendered Design Drawings * Appendix C.—Study Participants * Bibliography

More books from Progressive Management

Cover of the book Celebrating 50 Years: The Eisenhower Interstate Highway System - History of the Interstate Road and Transportation Infrastructure, Impact on American Culture, Ways to Reduce Congestion by Progressive Management
Cover of the book U.S. Army Attack Aviation in a Decisive Action Environment: History, Doctrine, and a Need for Doctrinal Refinement – Vietnam, Desert Storm, and Iraq War, Rotary Wing Attack, Technology and Sky Cavalry by Progressive Management
Cover of the book 21st Century FEMA Study Course: Mitigation eGrants for the Grant Applicant (IS-31) by Progressive Management
Cover of the book American Influence on Post-World War I Recovery of Germany: U.S. Leadership Under the Treaty of Versailles including the Dawes Plan and the Young Plan on War Reparations with American Protectionism by Progressive Management
Cover of the book 21st Century FEMA Study Course: Emergency Support Function #4 Firefighting (IS-804) - NRF, Forest Service, Hotshot Crews, Wildland Fires, Structural Fires, National Interagency Fire Center (NIFC) by Progressive Management
Cover of the book The Role of Federal Military Forces in Domestic Disorders 1789-1878: History of Controversial Events, Posse Comitatus, Mormon Conflict, Whiskey Rebellion, Racial Strife, KKK, Slave Law by Progressive Management
Cover of the book Fire Effects of Bombing Attacks: The Firebombing and Destruction of Hamburg and Dresden in World War II by Incendiary Attack, Fire Storms, Effectiveness of Barriers, Japanese Fire Bombing by Progressive Management
Cover of the book Cryptocurrency and State Sovereignty: Comprehensive Review of Bitcoin, Blockchain, and Virtual Currency Technology, Hash Functions, Merkle Trees, and Security, Government Bans and Regulations by Progressive Management
Cover of the book Changes, Challenges, Champions: A History of the U.S. Army Corps of Engineers Fort Worth District 2000 - 2011 - Iraq War, War on Terror, Post-Katrina Civil Works, Fort Bliss MILCON, Post-9/11 by Progressive Management
Cover of the book Evolution of United States Army Deployment Operations: The Santiago Campaign Expedition’s Mobilization through Tampa, Florida in 1898 to Prepare for Invasion of Cuba, Reception and Staging Process by Progressive Management
Cover of the book Loss of Signal: Aeromedical Lessons Learned from the STS-107 Columbia Space Shuttle Mishap - Aerospace Medicine, Reentry and Spacecraft Breakup, Search and Recovery, Forensic Sciences by Progressive Management
Cover of the book Scotland's Potential Independence: Defense Implications for Britain, NATO, and the United States - UK's Nuclear Weapons Deterrence Posture with Trident Submarine-Launched Ballistic Missiles by Progressive Management
Cover of the book Forging the Sword: Defense Production During the Cold War - DoD Industrial Facilities, Aircraft, Ammunition, Tank Plants, Shipyards, Reagan Buildup, Redstone, Pine Bluff, Picatinny Arsenal by Progressive Management
Cover of the book Skilled and Resolute: A History of the 12th Evacuation Hospital and the 212th MASH 1917-2006 - World War I and II, Vietnam, Persian Gulf War Desert Storm, Balkans, Iraq War, Iraqi Freedom, Final Days by Progressive Management
Cover of the book 2011 Complete Guide to Saudi Arabia: Oil and Energy, King Abdullah, Military, Human and Religious Rights, Islam, Mecca and Medina, History, Trade, Economy - Authoritative Coverage by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy