NASA Space Technology Report: Low Cost Robotic Lunar Lander (COMPASS Final Report), Launch Options including SpaceX, Subsystems, Costs and Risks

Nonfiction, Science & Nature, Technology, Aeronautics & Astronautics, Science, Physics, Astrophysics & Space Science
Cover of the book NASA Space Technology Report: Low Cost Robotic Lunar Lander (COMPASS Final Report), Launch Options including SpaceX, Subsystems, Costs and Risks by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781311953001
Publisher: Progressive Management Publication: September 3, 2014
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781311953001
Publisher: Progressive Management
Publication: September 3, 2014
Imprint: Smashwords Edition
Language: English

The goal of this COllaborative Modeling for the Parametric Assessment of Space Systems (COMPASS) session was to use Total Low Cost as the objective function, and design a Robotic Lunar Lander to deliver an unspecified payload (greater than zero) to the lunar surface for the lowest cost. The spacecraft designed as the baseline out of this study was a solar powered robotic lander, launched on a Minotaur V launch vehicle on a direct injection trajectory to the lunar surface. A Star 27 solid rocket motor does lunar capture and performs 88 percent of the descent burn. The Robotic Lunar Lander soft-lands using a hydrazine propulsion system to perform the last 10 percent of the landing maneuver, leaving the descent at a near zero, but not exactly zero, terminal velocity. This low-cost robotic lander delivers 10 kg of science payload instruments to the lunar surface.

1.0 Executive Summary * 2.0 Study Background and Assumptions * 2.1 Introduction * 2.2 Assumptions and Approach * 2.2.1 Survey Starting Points * 2.2.2 Fault Tolerance * 2.3 Growth, Contingency and Margin Policy * 2.4 Mission Description * 2.4.1 Mission Analysis Assumptions * 2.4.2 Main Mission Trajectory Options * 2.4.3 Mission Analysis Event Timeline * 2.4.4 Mission Trajectory Details * 2.5 Small Launch Vehicle Details * 2.5.1 Minotaur * 2.5.2 SpaceX—Alternate Launch Vehicle Option * 2.6 System Design Trade Space: Preliminary Analysis * 2.7 Baseline System Design * 3.0 Baseline Design * 3.1 Top Level Design (MEL and PEL) * 3.1.1 Master Equipment List (MEL) * 3.1.2 Power Equipment List (PEL) * 3.2 System Level Summary * 3.3 Design Concept Drawing and Description * 4.0 Subsystem Breakdown * 4.1 Communications * 4.1.1 Communications Requirements * 4.1.2 Communications Assumptions * 4.1.3 Communications Design and MEL * 4.1.4 Communications Trades * 4.1.5 Communications Analytical Methods * 4.1.6 Communications Risk Inputs * 4.1.7 Communications Recommendation * 4.2 Avionics * 4.2.1 Avionics Requirements * 4.2.2 Avionics Assumptions * 4.2.3 Avionics Design and MEL * 4.2.4 Avionics Trades * 4.2.5 Avionics Analytical Methods * 4.2.6 Avionics Risk Inputs * 4.2.7 Avionics Recommendation * 4.3 Electrical Power System * 4.3.1 Electrical Power Requirements * 4.3.2 Electrical Power Assumptions * 4.3.3 Electrical Power Design and MEL * 4.3.4 Electrical Power Trades * 4.3.5 Electrical Power Analytical Methods * 4.3.6 Electrical Power Risk Inputs * 4.3.7 Electrical Power Recommendation * 4.4 Structures and Mechanisms * 4.4.1 Structures and Mechanisms Requirements * 4.4.2 Structures and Mechanisms Assumptions * 4.4.3 Structures and Mechanisms Design and MEL * 4.4.4 Structures and Mechanisms Trades * 4.4.5 Structures and Mechanisms Analytical Methods * 4.4.6 Structures and Mechanisms Risk Inputs * 4.4.7 Structures and Mechanisms Recommendation * 4.5 Propulsion and Propellant Management * 4.5.1 Propulsion and Propellant Management Requirements * 4.5.2 Propulsion and Propellant Management Assumptions * 4.5.3 Propulsion and Propellant Management Analytical Methods * 4.5.4 Propulsion and Propellant Management Design and MEL * 4.5.5 Propulsion and Propellant Management Trades * 4.5.6 Propulsion and Propellant Management Risk Inputs * 4.5.7 Propulsion and Propellant Management Recommendation * 4.6 Thermal Control * 4.6.1 Thermal Requirements * 4.6.2 Thermal Assumptions * 4.6.3 Thermal Design and MEL * 4.6.4 Thermal Trades * 4.6.5 Thermal Analytical Methods * 4.6.6 Thermal Risk Inputs * 4.6.7 Thermal Recommendation * 5.0 Cost, Risk and Reliability * 5.1 Costing: Baseline Chemical Lunar Lander * 5.2 Cost Modeling Assumptions * 5.3 Cost Modeling Approach * 6.0 Trade Space Iterations * 6.1 Case 1: Off-the-Shelf Chemical Propulsion * 6.2 Case 2: Off-the-Shelf Electric Propulsion * 6.3 Case 3: Advanced Direct Drive Electric Propulsion * Appendix A.—Acronyms and Abbreviations * Appendix B.—Case 1 Rendered Design Drawings * Appendix C.—Study Participants * Bibliography

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The goal of this COllaborative Modeling for the Parametric Assessment of Space Systems (COMPASS) session was to use Total Low Cost as the objective function, and design a Robotic Lunar Lander to deliver an unspecified payload (greater than zero) to the lunar surface for the lowest cost. The spacecraft designed as the baseline out of this study was a solar powered robotic lander, launched on a Minotaur V launch vehicle on a direct injection trajectory to the lunar surface. A Star 27 solid rocket motor does lunar capture and performs 88 percent of the descent burn. The Robotic Lunar Lander soft-lands using a hydrazine propulsion system to perform the last 10 percent of the landing maneuver, leaving the descent at a near zero, but not exactly zero, terminal velocity. This low-cost robotic lander delivers 10 kg of science payload instruments to the lunar surface.

1.0 Executive Summary * 2.0 Study Background and Assumptions * 2.1 Introduction * 2.2 Assumptions and Approach * 2.2.1 Survey Starting Points * 2.2.2 Fault Tolerance * 2.3 Growth, Contingency and Margin Policy * 2.4 Mission Description * 2.4.1 Mission Analysis Assumptions * 2.4.2 Main Mission Trajectory Options * 2.4.3 Mission Analysis Event Timeline * 2.4.4 Mission Trajectory Details * 2.5 Small Launch Vehicle Details * 2.5.1 Minotaur * 2.5.2 SpaceX—Alternate Launch Vehicle Option * 2.6 System Design Trade Space: Preliminary Analysis * 2.7 Baseline System Design * 3.0 Baseline Design * 3.1 Top Level Design (MEL and PEL) * 3.1.1 Master Equipment List (MEL) * 3.1.2 Power Equipment List (PEL) * 3.2 System Level Summary * 3.3 Design Concept Drawing and Description * 4.0 Subsystem Breakdown * 4.1 Communications * 4.1.1 Communications Requirements * 4.1.2 Communications Assumptions * 4.1.3 Communications Design and MEL * 4.1.4 Communications Trades * 4.1.5 Communications Analytical Methods * 4.1.6 Communications Risk Inputs * 4.1.7 Communications Recommendation * 4.2 Avionics * 4.2.1 Avionics Requirements * 4.2.2 Avionics Assumptions * 4.2.3 Avionics Design and MEL * 4.2.4 Avionics Trades * 4.2.5 Avionics Analytical Methods * 4.2.6 Avionics Risk Inputs * 4.2.7 Avionics Recommendation * 4.3 Electrical Power System * 4.3.1 Electrical Power Requirements * 4.3.2 Electrical Power Assumptions * 4.3.3 Electrical Power Design and MEL * 4.3.4 Electrical Power Trades * 4.3.5 Electrical Power Analytical Methods * 4.3.6 Electrical Power Risk Inputs * 4.3.7 Electrical Power Recommendation * 4.4 Structures and Mechanisms * 4.4.1 Structures and Mechanisms Requirements * 4.4.2 Structures and Mechanisms Assumptions * 4.4.3 Structures and Mechanisms Design and MEL * 4.4.4 Structures and Mechanisms Trades * 4.4.5 Structures and Mechanisms Analytical Methods * 4.4.6 Structures and Mechanisms Risk Inputs * 4.4.7 Structures and Mechanisms Recommendation * 4.5 Propulsion and Propellant Management * 4.5.1 Propulsion and Propellant Management Requirements * 4.5.2 Propulsion and Propellant Management Assumptions * 4.5.3 Propulsion and Propellant Management Analytical Methods * 4.5.4 Propulsion and Propellant Management Design and MEL * 4.5.5 Propulsion and Propellant Management Trades * 4.5.6 Propulsion and Propellant Management Risk Inputs * 4.5.7 Propulsion and Propellant Management Recommendation * 4.6 Thermal Control * 4.6.1 Thermal Requirements * 4.6.2 Thermal Assumptions * 4.6.3 Thermal Design and MEL * 4.6.4 Thermal Trades * 4.6.5 Thermal Analytical Methods * 4.6.6 Thermal Risk Inputs * 4.6.7 Thermal Recommendation * 5.0 Cost, Risk and Reliability * 5.1 Costing: Baseline Chemical Lunar Lander * 5.2 Cost Modeling Assumptions * 5.3 Cost Modeling Approach * 6.0 Trade Space Iterations * 6.1 Case 1: Off-the-Shelf Chemical Propulsion * 6.2 Case 2: Off-the-Shelf Electric Propulsion * 6.3 Case 3: Advanced Direct Drive Electric Propulsion * Appendix A.—Acronyms and Abbreviations * Appendix B.—Case 1 Rendered Design Drawings * Appendix C.—Study Participants * Bibliography

More books from Progressive Management

Cover of the book Advancing Strategic Thought Series: Defense Planning For National Security: Navigation Aids for the Mystery Tour, Black Swan Events, Clausewitz, Futurology, Strategic History by Progressive Management
Cover of the book Programmatic Integration of Cyber into the Institutional Domain of Leader Development: Cyberspace and Computer Curriculum in Army Learning Institutions, Comparing Cyber to Armor or Aviation by Progressive Management
Cover of the book Maritime Improvised Explosive Devices: A Threat Based Technology Study - Use of MIEDs by Terrorists and the Navy's Explosive Ordnance Disposal (EOD) Capability to Counter With Divers and Robots by Progressive Management
Cover of the book 2011 Introduction to Wind Power and Wind Energy Systems: Practical Information about America's Wind Program, Turbines, Consumer Guide, Federal Incentives, Large and Small Systems by Progressive Management
Cover of the book The Federal Reserve and the Financial Crisis: College Lectures by Federal Reserve Chairman Ben Bernanke - Roaring 20s, Great Depression, 1929 Stock Market Crash, 2008 Panic by Progressive Management
Cover of the book Geothermal Technologies Market Report: Department of Energy Report on the Status of Geothermal Power, Investment, American Activity, Leasing and Permitting, Employment and Economic Benefits by Progressive Management
Cover of the book 2011 Unmanned Aircraft Systems (UAS) Encyclopedia: UAVs, Drones, Remotely Piloted Aircraft (RPA), Weapons and Surveillance - Roadmap, Flight Plan, Reliability Study, Systems News and Notes by Progressive Management
Cover of the book China Policies and Controversies: U.S. Military Papers - PLA, Deception, Maritime Quest, Navy, Taiwan Arms Sales, Turkey and China, plus 2014 U.S. Intelligence Threat Assessment by Progressive Management
Cover of the book Aviation Urban Operations: Are We Training Like We Fight? Battle for An Nasiriyah, Iraq - Baptism by Fire for Joint Urban Operations (JUO) Doctrine, CAS, Air Superiority, Special Operations by Progressive Management
Cover of the book Plant and Crop-based Biofuels and Industrial Biotechnology: Comprehensive World Survey of Biofuel Industries and Processes, Renewable Energy and Resources Roadmap by Progressive Management
Cover of the book Encyclopedia of Military Space Operations at Cape Canaveral: From Early Ballistic Missile Launches in 1953 through Titan, Atlas, Delta, and EELV Launches with Mission Details by Progressive Management
Cover of the book North Korea in Perspective: Orientation Guide and North Korean Cultural Orientation: Geography, History, Economy, Security, Pyongyang, Goguryo, Silla Dynasty, Chosun, Kim Dynasty, Kim Jong Un, Yalu by Progressive Management
Cover of the book Advanced Manufacturing: National Strategic Plan, Manufacturing Innovation, Infrastructure and Facilities, Additive (3D) Manufacturing, National Bioeconomy Blueprint, Domestic Technology by Progressive Management
Cover of the book Turkey in Perspective: Orientation Guide and Turkish Cultural Orientation: Geography, History, Economy, Security, Istanbul, Ankara, Izmir, Bursa, Kurds, Laz, Alevi, Sufism, Cemevis, Tigris, Euphrates by Progressive Management
Cover of the book The History of Chemical Warfare - From World War I to Iraq, Terrorist Threats, Countermeasures and Medical Management, CWC Treaty and Demilitarization (Medical Aspects of Chemical Warfare Excerpt) by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy