NASA Space Technology Report: Low Cost Robotic Lunar Lander (COMPASS Final Report), Launch Options including SpaceX, Subsystems, Costs and Risks

Nonfiction, Science & Nature, Technology, Aeronautics & Astronautics, Science, Physics, Astrophysics & Space Science
Cover of the book NASA Space Technology Report: Low Cost Robotic Lunar Lander (COMPASS Final Report), Launch Options including SpaceX, Subsystems, Costs and Risks by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781311953001
Publisher: Progressive Management Publication: September 3, 2014
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781311953001
Publisher: Progressive Management
Publication: September 3, 2014
Imprint: Smashwords Edition
Language: English

The goal of this COllaborative Modeling for the Parametric Assessment of Space Systems (COMPASS) session was to use Total Low Cost as the objective function, and design a Robotic Lunar Lander to deliver an unspecified payload (greater than zero) to the lunar surface for the lowest cost. The spacecraft designed as the baseline out of this study was a solar powered robotic lander, launched on a Minotaur V launch vehicle on a direct injection trajectory to the lunar surface. A Star 27 solid rocket motor does lunar capture and performs 88 percent of the descent burn. The Robotic Lunar Lander soft-lands using a hydrazine propulsion system to perform the last 10 percent of the landing maneuver, leaving the descent at a near zero, but not exactly zero, terminal velocity. This low-cost robotic lander delivers 10 kg of science payload instruments to the lunar surface.

1.0 Executive Summary * 2.0 Study Background and Assumptions * 2.1 Introduction * 2.2 Assumptions and Approach * 2.2.1 Survey Starting Points * 2.2.2 Fault Tolerance * 2.3 Growth, Contingency and Margin Policy * 2.4 Mission Description * 2.4.1 Mission Analysis Assumptions * 2.4.2 Main Mission Trajectory Options * 2.4.3 Mission Analysis Event Timeline * 2.4.4 Mission Trajectory Details * 2.5 Small Launch Vehicle Details * 2.5.1 Minotaur * 2.5.2 SpaceX—Alternate Launch Vehicle Option * 2.6 System Design Trade Space: Preliminary Analysis * 2.7 Baseline System Design * 3.0 Baseline Design * 3.1 Top Level Design (MEL and PEL) * 3.1.1 Master Equipment List (MEL) * 3.1.2 Power Equipment List (PEL) * 3.2 System Level Summary * 3.3 Design Concept Drawing and Description * 4.0 Subsystem Breakdown * 4.1 Communications * 4.1.1 Communications Requirements * 4.1.2 Communications Assumptions * 4.1.3 Communications Design and MEL * 4.1.4 Communications Trades * 4.1.5 Communications Analytical Methods * 4.1.6 Communications Risk Inputs * 4.1.7 Communications Recommendation * 4.2 Avionics * 4.2.1 Avionics Requirements * 4.2.2 Avionics Assumptions * 4.2.3 Avionics Design and MEL * 4.2.4 Avionics Trades * 4.2.5 Avionics Analytical Methods * 4.2.6 Avionics Risk Inputs * 4.2.7 Avionics Recommendation * 4.3 Electrical Power System * 4.3.1 Electrical Power Requirements * 4.3.2 Electrical Power Assumptions * 4.3.3 Electrical Power Design and MEL * 4.3.4 Electrical Power Trades * 4.3.5 Electrical Power Analytical Methods * 4.3.6 Electrical Power Risk Inputs * 4.3.7 Electrical Power Recommendation * 4.4 Structures and Mechanisms * 4.4.1 Structures and Mechanisms Requirements * 4.4.2 Structures and Mechanisms Assumptions * 4.4.3 Structures and Mechanisms Design and MEL * 4.4.4 Structures and Mechanisms Trades * 4.4.5 Structures and Mechanisms Analytical Methods * 4.4.6 Structures and Mechanisms Risk Inputs * 4.4.7 Structures and Mechanisms Recommendation * 4.5 Propulsion and Propellant Management * 4.5.1 Propulsion and Propellant Management Requirements * 4.5.2 Propulsion and Propellant Management Assumptions * 4.5.3 Propulsion and Propellant Management Analytical Methods * 4.5.4 Propulsion and Propellant Management Design and MEL * 4.5.5 Propulsion and Propellant Management Trades * 4.5.6 Propulsion and Propellant Management Risk Inputs * 4.5.7 Propulsion and Propellant Management Recommendation * 4.6 Thermal Control * 4.6.1 Thermal Requirements * 4.6.2 Thermal Assumptions * 4.6.3 Thermal Design and MEL * 4.6.4 Thermal Trades * 4.6.5 Thermal Analytical Methods * 4.6.6 Thermal Risk Inputs * 4.6.7 Thermal Recommendation * 5.0 Cost, Risk and Reliability * 5.1 Costing: Baseline Chemical Lunar Lander * 5.2 Cost Modeling Assumptions * 5.3 Cost Modeling Approach * 6.0 Trade Space Iterations * 6.1 Case 1: Off-the-Shelf Chemical Propulsion * 6.2 Case 2: Off-the-Shelf Electric Propulsion * 6.3 Case 3: Advanced Direct Drive Electric Propulsion * Appendix A.—Acronyms and Abbreviations * Appendix B.—Case 1 Rendered Design Drawings * Appendix C.—Study Participants * Bibliography

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The goal of this COllaborative Modeling for the Parametric Assessment of Space Systems (COMPASS) session was to use Total Low Cost as the objective function, and design a Robotic Lunar Lander to deliver an unspecified payload (greater than zero) to the lunar surface for the lowest cost. The spacecraft designed as the baseline out of this study was a solar powered robotic lander, launched on a Minotaur V launch vehicle on a direct injection trajectory to the lunar surface. A Star 27 solid rocket motor does lunar capture and performs 88 percent of the descent burn. The Robotic Lunar Lander soft-lands using a hydrazine propulsion system to perform the last 10 percent of the landing maneuver, leaving the descent at a near zero, but not exactly zero, terminal velocity. This low-cost robotic lander delivers 10 kg of science payload instruments to the lunar surface.

1.0 Executive Summary * 2.0 Study Background and Assumptions * 2.1 Introduction * 2.2 Assumptions and Approach * 2.2.1 Survey Starting Points * 2.2.2 Fault Tolerance * 2.3 Growth, Contingency and Margin Policy * 2.4 Mission Description * 2.4.1 Mission Analysis Assumptions * 2.4.2 Main Mission Trajectory Options * 2.4.3 Mission Analysis Event Timeline * 2.4.4 Mission Trajectory Details * 2.5 Small Launch Vehicle Details * 2.5.1 Minotaur * 2.5.2 SpaceX—Alternate Launch Vehicle Option * 2.6 System Design Trade Space: Preliminary Analysis * 2.7 Baseline System Design * 3.0 Baseline Design * 3.1 Top Level Design (MEL and PEL) * 3.1.1 Master Equipment List (MEL) * 3.1.2 Power Equipment List (PEL) * 3.2 System Level Summary * 3.3 Design Concept Drawing and Description * 4.0 Subsystem Breakdown * 4.1 Communications * 4.1.1 Communications Requirements * 4.1.2 Communications Assumptions * 4.1.3 Communications Design and MEL * 4.1.4 Communications Trades * 4.1.5 Communications Analytical Methods * 4.1.6 Communications Risk Inputs * 4.1.7 Communications Recommendation * 4.2 Avionics * 4.2.1 Avionics Requirements * 4.2.2 Avionics Assumptions * 4.2.3 Avionics Design and MEL * 4.2.4 Avionics Trades * 4.2.5 Avionics Analytical Methods * 4.2.6 Avionics Risk Inputs * 4.2.7 Avionics Recommendation * 4.3 Electrical Power System * 4.3.1 Electrical Power Requirements * 4.3.2 Electrical Power Assumptions * 4.3.3 Electrical Power Design and MEL * 4.3.4 Electrical Power Trades * 4.3.5 Electrical Power Analytical Methods * 4.3.6 Electrical Power Risk Inputs * 4.3.7 Electrical Power Recommendation * 4.4 Structures and Mechanisms * 4.4.1 Structures and Mechanisms Requirements * 4.4.2 Structures and Mechanisms Assumptions * 4.4.3 Structures and Mechanisms Design and MEL * 4.4.4 Structures and Mechanisms Trades * 4.4.5 Structures and Mechanisms Analytical Methods * 4.4.6 Structures and Mechanisms Risk Inputs * 4.4.7 Structures and Mechanisms Recommendation * 4.5 Propulsion and Propellant Management * 4.5.1 Propulsion and Propellant Management Requirements * 4.5.2 Propulsion and Propellant Management Assumptions * 4.5.3 Propulsion and Propellant Management Analytical Methods * 4.5.4 Propulsion and Propellant Management Design and MEL * 4.5.5 Propulsion and Propellant Management Trades * 4.5.6 Propulsion and Propellant Management Risk Inputs * 4.5.7 Propulsion and Propellant Management Recommendation * 4.6 Thermal Control * 4.6.1 Thermal Requirements * 4.6.2 Thermal Assumptions * 4.6.3 Thermal Design and MEL * 4.6.4 Thermal Trades * 4.6.5 Thermal Analytical Methods * 4.6.6 Thermal Risk Inputs * 4.6.7 Thermal Recommendation * 5.0 Cost, Risk and Reliability * 5.1 Costing: Baseline Chemical Lunar Lander * 5.2 Cost Modeling Assumptions * 5.3 Cost Modeling Approach * 6.0 Trade Space Iterations * 6.1 Case 1: Off-the-Shelf Chemical Propulsion * 6.2 Case 2: Off-the-Shelf Electric Propulsion * 6.3 Case 3: Advanced Direct Drive Electric Propulsion * Appendix A.—Acronyms and Abbreviations * Appendix B.—Case 1 Rendered Design Drawings * Appendix C.—Study Participants * Bibliography

More books from Progressive Management

Cover of the book Spy Satellite Encyclopedia: The Amazing History of the Early Photoreconnaissance Satellites by Progressive Management
Cover of the book NASA Space Technology Report: Deep Space Habitat Concept of Operations for Transit Mission Phases - Mars, Phobos / Deimos, Near Earth Asteroid, Habitats, Crew Systems by Progressive Management
Cover of the book Apollo and America's Moon Landing Program: Apollo 16 Official NASA Mission Reports and Press Kit - 1972 Fifth Lunar Landing at Descartes - Astronauts Young, Mattingly, and Duke by Progressive Management
Cover of the book Deception, Disinformation, and Strategic Communications: How One Interagency Group Made a Major Difference - Cold War, COINTELPRO, CHAOS, Reagan, Soviet Active Measures, KGB, Gorbachev by Progressive Management
Cover of the book 21st Century Scleroderma Sourcebook: Clinical Data for Patients, Families, and Physicians, including Morphea and Linear, Systemic Sclerosis, Raynaud's Phenomenon, Sclerodactyly, Related Conditions by Progressive Management
Cover of the book Atoms for Peace and War 1953-1961: Eisenhower and the Atomic Energy Commission (AEC) - Oppenheimer, Debates about Test Ban, Disarmament, Nuclear War, Fallout, Power Reactors, Teller, Clean Bomb by Progressive Management
Cover of the book Somalia in Perspective: Orientation Guide and Somali Cultural Orientation: Geography, History, Economy, Security, Mogadishu, Berbera, Merca, The Guban, Karkaar Mountains, Evil Eye, Khat, Piracy by Progressive Management
Cover of the book U.S. Army Medical Correspondence Course: Poultry I - Chicken, Poultry Processing, Destination and Surveillance Inspection by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: U.S. Marine Corps (USMC) Marine Corps Values: A User's Guide for Discussion Leaders (Value-Added Professional Format Series) by Progressive Management
Cover of the book The British Boer War and the French Algerian Conflict Counterinsurgency for Today: Guerilla Warfare, Case Study of Algerian Conflict 1954-1962, Literature Review, Small Wars, Colonel Callwell by Progressive Management
Cover of the book Russia in Perspective: Orientation Guide and Cultural Orientation: Geography, History, Economy, Society, Security, Religion, Post-Soviet Russia, Stalin, Ivan the Terrible, Ukraine, Crimea by Progressive Management
Cover of the book Questions and Answers About Swine Flu: 2009 H1N1 Pandemic Influenza - Medical Data with Information on Symptoms, Treatment, Vaccine Safety and Drugs by Progressive Management
Cover of the book Societal Impact of Spaceflight: Apollo, Shuttle, China, Russia, Reconnaissance, GPS, Earth Satellites, JPL, Food Standards, Spacefaring Species (NASA SP-2007-4801) by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: Combat Net Radio Operations (FM 11-32) SINCGARS, Battlefield Radio (Value-Added Professional Format Series) by Progressive Management
Cover of the book Space Shuttle NASA Mission Reports: 1990 Missions, STS-32, STS-36, STS-31, STS-41, STS-38, STS-35 by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy