Nanobioelectronics - for Electronics, Biology, and Medicine

Nonfiction, Science & Nature, Technology, Nanotechnology, Science, Biological Sciences, Biotechnology
Cover of the book Nanobioelectronics - for Electronics, Biology, and Medicine by , Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9780387094595
Publisher: Springer New York Publication: March 15, 2009
Imprint: Springer Language: English
Author:
ISBN: 9780387094595
Publisher: Springer New York
Publication: March 15, 2009
Imprint: Springer
Language: English

The combination of biological elements with electronics is of great interest for many research areas. Inspired by biological signal processes, scientists and engineers are exploring ways of manipulating, assembling, and applying biomolecules and cells on integrated circuits, joining biology with electronic devices. The overall goal is to create bioelectronic devices for biosensing, drug discovery, and curing diseases, but also to build new electronic systems based on biologically inspired concepts. This research area called bioelectronics requires a broad interdisciplinary and transdisciplinary approach to biology and material science. Even though at the frontier of life science and material science, bioelectronics has achieved in the last years many objectives of scientific and industrial relevance, including aspects of electronics and biotechnology. Although the first steps in this field combined biological and electronic units for sensor applications (e. g. , glucose oxidase on an oxygen electrode), we see now many applications in the fields of genomics, proteomics, and celomics as well as electronics. This approach challenges both the researcher and the student to learn and think outside of their zones of comfort and training. Today, one can fabricate electrically active structures that are commensurate in size with biomolecules. The advancement of nanotechnology has influenced bioelectronics to a large extent.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The combination of biological elements with electronics is of great interest for many research areas. Inspired by biological signal processes, scientists and engineers are exploring ways of manipulating, assembling, and applying biomolecules and cells on integrated circuits, joining biology with electronic devices. The overall goal is to create bioelectronic devices for biosensing, drug discovery, and curing diseases, but also to build new electronic systems based on biologically inspired concepts. This research area called bioelectronics requires a broad interdisciplinary and transdisciplinary approach to biology and material science. Even though at the frontier of life science and material science, bioelectronics has achieved in the last years many objectives of scientific and industrial relevance, including aspects of electronics and biotechnology. Although the first steps in this field combined biological and electronic units for sensor applications (e. g. , glucose oxidase on an oxygen electrode), we see now many applications in the fields of genomics, proteomics, and celomics as well as electronics. This approach challenges both the researcher and the student to learn and think outside of their zones of comfort and training. Today, one can fabricate electrically active structures that are commensurate in size with biomolecules. The advancement of nanotechnology has influenced bioelectronics to a large extent.

More books from Springer New York

Cover of the book Immunocytochemistry by
Cover of the book Surgical Anatomy and Technique by
Cover of the book Models of Psychological Space by
Cover of the book How Helminths Alter Immunity to Infection by
Cover of the book Ensemble Machine Learning by
Cover of the book Introduction to Financial Forecasting in Investment Analysis by
Cover of the book Phonological Processes and Brain Mechanisms by
Cover of the book Graph Energy by
Cover of the book The Evolution of Applied Harmonic Analysis by
Cover of the book Müller Cells in the Healthy and Diseased Retina by
Cover of the book Topology, Geometry and Gauge fields by
Cover of the book Cell Death in Reproductive Physiology by
Cover of the book Acute and Critical Care Formulas and Laboratory Values by
Cover of the book Disease Recurrence After Liver Transplantation by
Cover of the book Complex Evolutionary Dynamics in Urban-Regional and Ecologic-Economic Systems by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy