Model Reduction of Parametrized Systems

Nonfiction, Science & Nature, Mathematics, Counting & Numeration, Computers, Programming
Cover of the book Model Reduction of Parametrized Systems by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319587868
Publisher: Springer International Publishing Publication: September 5, 2017
Imprint: Springer Language: English
Author:
ISBN: 9783319587868
Publisher: Springer International Publishing
Publication: September 5, 2017
Imprint: Springer
Language: English

The special volume offers a global guide to new concepts and approaches concerning the following topics: reduced basis methods, proper orthogonal decomposition, proper generalized decomposition, approximation theory related to model reduction, learning theory and compressed sensing, stochastic and high-dimensional problems, system-theoretic methods, nonlinear model reduction, reduction of coupled problems/multiphysics, optimization and optimal control, state estimation and control, reduced order models and domain decomposition methods, Krylov-subspace and interpolatory methods, and applications to real industrial and complex problems.

The book represents the state of the art in the development of reduced order methods. It contains contributions from internationally respected experts, guaranteeing a wide range of expertise and topics. Further, it reflects an important effor

t, carried out over the last 12 years, to build a growing research community in this field.

Though not a textbook, some of the chapters can be used as reference materials or lecture notes for classes and tutorials (doctoral schools, master classes).

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The special volume offers a global guide to new concepts and approaches concerning the following topics: reduced basis methods, proper orthogonal decomposition, proper generalized decomposition, approximation theory related to model reduction, learning theory and compressed sensing, stochastic and high-dimensional problems, system-theoretic methods, nonlinear model reduction, reduction of coupled problems/multiphysics, optimization and optimal control, state estimation and control, reduced order models and domain decomposition methods, Krylov-subspace and interpolatory methods, and applications to real industrial and complex problems.

The book represents the state of the art in the development of reduced order methods. It contains contributions from internationally respected experts, guaranteeing a wide range of expertise and topics. Further, it reflects an important effor

t, carried out over the last 12 years, to build a growing research community in this field.

Though not a textbook, some of the chapters can be used as reference materials or lecture notes for classes and tutorials (doctoral schools, master classes).

More books from Springer International Publishing

Cover of the book Geoecological Risk Management in Polar Areas by
Cover of the book Transforming Learning and IT Management through Gamification by
Cover of the book Real-time Speech and Music Classification by Large Audio Feature Space Extraction by
Cover of the book Introduction to Deep Learning by
Cover of the book Technology, Institutions and Labor by
Cover of the book Impacts of Tannery Operations on Guppy, Poecilia reticulata by
Cover of the book Advances in Internet, Data & Web Technologies by
Cover of the book Network Data Analytics by
Cover of the book The Human Right to Water by
Cover of the book Host Plants of World Agrilus (Coleoptera, Buprestidae) by
Cover of the book When Parents Kill Children by
Cover of the book Malignancies of the Groin by
Cover of the book Dynamic Performance Management by
Cover of the book Business Information Systems by
Cover of the book Pattern Recognition by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy