Method of Lines Analysis of Turing Models

Nonfiction, Science & Nature, Science, Other Sciences, Methodology, Mathematics, Applied
Cover of the book Method of Lines Analysis of Turing Models by William E Schiesser, World Scientific Publishing Company
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: William E Schiesser ISBN: 9789813226715
Publisher: World Scientific Publishing Company Publication: June 28, 2017
Imprint: WSPC Language: English
Author: William E Schiesser
ISBN: 9789813226715
Publisher: World Scientific Publishing Company
Publication: June 28, 2017
Imprint: WSPC
Language: English

This book is directed toward the numerical integration (solution) of a system of partial differential equations (PDEs) that describes a combination of chemical reaction and diffusion, that is, reaction-diffusion PDEs. The particular form of the PDEs corresponds to a system discussed by Alan Turing and is therefore termed a Turing model.

Specifically, Turing considered how a reaction-diffusion system can be formulated that does not have the usual smoothing properties of a diffusion (dispersion) system, and can, in fact, develop a spatial variation that might be interpreted as a form of morphogenesis, so he termed the chemicals as morphogens.

Turing alluded to the important impact computers would have in the study of a morphogenic PDE system, but at the time (1952), computers were still not readily available. Therefore, his paper is based on analytical methods. Although computers have since been applied to Turing models, computer-based analysis is still not facilitated by a discussion of numerical algorithms and a readily available system of computer routines.

The intent of this book is to provide a basic discussion of numerical methods and associated computer routines for reaction-diffusion systems of varying form. The presentation has a minimum of formal mathematics. Rather, the presentation is in terms of detailed examples, presented at an introductory level. This format should assist readers who are interested in developing computer-based analysis for reaction-diffusion PDE systems without having to first study numerical methods and computer programming (coding).

The numerical examples are discussed in terms of: (1) numerical integration of the PDEs to demonstrate the spatiotemporal features of the solutions and (2) a numerical eigenvalue analysis that corroborates the observed temporal variation of the solutions. The resulting temporal variation of the 2D and 3D plots demonstrates how the solutions evolve dynamically, including oscillatory long-term behavior.

In all of the examples, routines in R are presented and discussed in detail. The routines are available through this link so that the reader can execute the PDE models to reproduce the reported solutions, then experiment with the models, including extensions and application to alternative models.

Contents:

  • One Dimensional PDEs Introduction
  • Eigenvalue Analysis
  • Nonlinear Models
  • Alternate Coordinate Systems
  • Two Dimensional PDEs

Readership: Biologists, medical researchers and clinicians, biophysicists, biochemists, biomathematicians, anthropologists, engineers (biomedical, electrical, chemical).

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book is directed toward the numerical integration (solution) of a system of partial differential equations (PDEs) that describes a combination of chemical reaction and diffusion, that is, reaction-diffusion PDEs. The particular form of the PDEs corresponds to a system discussed by Alan Turing and is therefore termed a Turing model.

Specifically, Turing considered how a reaction-diffusion system can be formulated that does not have the usual smoothing properties of a diffusion (dispersion) system, and can, in fact, develop a spatial variation that might be interpreted as a form of morphogenesis, so he termed the chemicals as morphogens.

Turing alluded to the important impact computers would have in the study of a morphogenic PDE system, but at the time (1952), computers were still not readily available. Therefore, his paper is based on analytical methods. Although computers have since been applied to Turing models, computer-based analysis is still not facilitated by a discussion of numerical algorithms and a readily available system of computer routines.

The intent of this book is to provide a basic discussion of numerical methods and associated computer routines for reaction-diffusion systems of varying form. The presentation has a minimum of formal mathematics. Rather, the presentation is in terms of detailed examples, presented at an introductory level. This format should assist readers who are interested in developing computer-based analysis for reaction-diffusion PDE systems without having to first study numerical methods and computer programming (coding).

The numerical examples are discussed in terms of: (1) numerical integration of the PDEs to demonstrate the spatiotemporal features of the solutions and (2) a numerical eigenvalue analysis that corroborates the observed temporal variation of the solutions. The resulting temporal variation of the 2D and 3D plots demonstrates how the solutions evolve dynamically, including oscillatory long-term behavior.

In all of the examples, routines in R are presented and discussed in detail. The routines are available through this link so that the reader can execute the PDE models to reproduce the reported solutions, then experiment with the models, including extensions and application to alternative models.

Contents:

Readership: Biologists, medical researchers and clinicians, biophysicists, biochemists, biomathematicians, anthropologists, engineers (biomedical, electrical, chemical).

More books from World Scientific Publishing Company

Cover of the book Economics of the Middle East by William E Schiesser
Cover of the book Surprising Quantum Bounces by William E Schiesser
Cover of the book Scaling and Integration of High Speed Electronics and Optomechanical Systems by William E Schiesser
Cover of the book Computer Science and Technology by William E Schiesser
Cover of the book Functional Equations on Hypergroups by William E Schiesser
Cover of the book Mechanics and Mechatronics (ICMM2015) by William E Schiesser
Cover of the book Our Place in the Universe by William E Schiesser
Cover of the book Electronic Trading and Blockchain by William E Schiesser
Cover of the book The Rainbow and the Worm by William E Schiesser
Cover of the book XVIIth International Congress on Mathematical Physics by William E Schiesser
Cover of the book 2017 Annual Competitiveness Analysis and Impact of Exchange Rates on Foreign Direct Investment Inflows to Sub-National Economies of India by William E Schiesser
Cover of the book Lectures on Lie Groups by William E Schiesser
Cover of the book Explaining Islamist Insurgencies by William E Schiesser
Cover of the book Electromagnetic Waves for Thermonuclear Fusion Research by William E Schiesser
Cover of the book Singapore, My Country by William E Schiesser
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy