Gröbner Bases

Statistics and Software Systems

Nonfiction, Science & Nature, Mathematics, Statistics, Computers, Application Software
Cover of the book Gröbner Bases by , Springer Japan
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9784431545743
Publisher: Springer Japan Publication: January 7, 2014
Imprint: Springer Language: English
Author:
ISBN: 9784431545743
Publisher: Springer Japan
Publication: January 7, 2014
Imprint: Springer
Language: English

The idea of the Gröbner basis first appeared in a 1927 paper by F. S. Macaulay, who succeeded in creating a combinatorial characterization of the Hilbert functions of homogeneous ideals of the polynomial ring. Later, the modern definition of the Gröbner basis was independently introduced by Heisuke Hironaka in 1964 and Bruno Buchberger in 1965. However, after the discovery of the notion of the Gröbner basis by Hironaka and Buchberger, it was not actively pursued for 20 years. A breakthrough was made in the mid-1980s by David Bayer and Michael Stillman, who created the Macaulay computer algebra system with the help of the Gröbner basis. Since then, rapid development on the Gröbner basis has been achieved by many researchers, including Bernd Sturmfels.

This book serves as a standard bible of the Gröbner basis, for which the harmony of theory, application, and computation are indispensable. It provides all the fundamentals for graduate students to learn the ABC’s of the Gröbner basis, requiring no special knowledge to understand those basic points.

Starting from the introductory performance of the Gröbner basis (Chapter 1), a trip around mathematical software follows (Chapter 2). Then comes a deep discussion of how to compute the Gröbner basis (Chapter 3). These three chapters may be regarded as the first act of a mathematical play. The second act opens with topics on algebraic statistics (Chapter 4), a fascinating research area where the Gröbner basis of a toric ideal is a fundamental tool of the Markov chain Monte Carlo method. Moreover, the Gröbner basis of a toric ideal has had a great influence on the study of convex polytopes (Chapter 5). In addition, the Gröbner basis of the ring of differential operators gives effective algorithms on holonomic functions (Chapter 6). The third act (Chapter 7) is a collection of concrete examples and problems for Chapters 4, 5 and 6 emphasizing computation by using various software systems.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The idea of the Gröbner basis first appeared in a 1927 paper by F. S. Macaulay, who succeeded in creating a combinatorial characterization of the Hilbert functions of homogeneous ideals of the polynomial ring. Later, the modern definition of the Gröbner basis was independently introduced by Heisuke Hironaka in 1964 and Bruno Buchberger in 1965. However, after the discovery of the notion of the Gröbner basis by Hironaka and Buchberger, it was not actively pursued for 20 years. A breakthrough was made in the mid-1980s by David Bayer and Michael Stillman, who created the Macaulay computer algebra system with the help of the Gröbner basis. Since then, rapid development on the Gröbner basis has been achieved by many researchers, including Bernd Sturmfels.

This book serves as a standard bible of the Gröbner basis, for which the harmony of theory, application, and computation are indispensable. It provides all the fundamentals for graduate students to learn the ABC’s of the Gröbner basis, requiring no special knowledge to understand those basic points.

Starting from the introductory performance of the Gröbner basis (Chapter 1), a trip around mathematical software follows (Chapter 2). Then comes a deep discussion of how to compute the Gröbner basis (Chapter 3). These three chapters may be regarded as the first act of a mathematical play. The second act opens with topics on algebraic statistics (Chapter 4), a fascinating research area where the Gröbner basis of a toric ideal is a fundamental tool of the Markov chain Monte Carlo method. Moreover, the Gröbner basis of a toric ideal has had a great influence on the study of convex polytopes (Chapter 5). In addition, the Gröbner basis of the ring of differential operators gives effective algorithms on holonomic functions (Chapter 6). The third act (Chapter 7) is a collection of concrete examples and problems for Chapters 4, 5 and 6 emphasizing computation by using various software systems.

More books from Springer Japan

Cover of the book Nuclear Reactor Design by
Cover of the book Abiotic Stress Biology in Horticultural Plants by
Cover of the book Molecular Pathogenesis and Treatment of Chronic Myelogenous Leukemia by
Cover of the book Veins by
Cover of the book Autonomous Control Systems and Vehicles by
Cover of the book Pancreatoduodenectomy by
Cover of the book The Limit Shape Problem for Ensembles of Young Diagrams by
Cover of the book Behavioral Interactions, Markets, and Economic Dynamics by
Cover of the book Neuroimmunological Diseases by
Cover of the book Vertigo and Balance Disorders in Children by
Cover of the book Multi-Step Multi-Input One-Way Quantum Information Processing with Spatial and Temporal Modes of Light by
Cover of the book New Developments for Limb Salvage in Musculoskeletal Tumors by
Cover of the book Dispersing Primate Females by
Cover of the book The LEC Rat by
Cover of the book Interactions of Earth’s Magnetotail Plasma with the Surface, Plasma, and Magnetic Anomalies of the Moon by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy