Global Transcriptional Responses of Fission Yeast to Glucose Starvation Stress

Nonfiction, Science & Nature, Science, Biological Sciences, Genetics
Cover of the book Global Transcriptional Responses of Fission Yeast to Glucose Starvation Stress by Michael Sassen, GRIN Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Michael Sassen ISBN: 9783638400572
Publisher: GRIN Publishing Publication: July 20, 2005
Imprint: GRIN Publishing Language: English
Author: Michael Sassen
ISBN: 9783638400572
Publisher: GRIN Publishing
Publication: July 20, 2005
Imprint: GRIN Publishing
Language: English

Diploma Thesis from the year 2005 in the subject Biology - Genetics / Gene Technology, grade: 1,1, TU Bergakademie Freiberg, 116 entries in the bibliography, language: English, abstract: 1. Introduction 1.1 Schizosaccharomyces pombe as a Model System S. pombe functions as a suitable model system since it is easy and inexpensive to rear, has a convenient size, a short life cycle, and is genetically manipulable. As a unicellular eukaryote, the fission yeast S. pombe can exist either in a haploid or diploid state and possesses two different mating types (h+ and h-). The wild type, however, is h90, which means it can switch mating type. Figure 1.01: Left, picture of S. pombe cells At top are two dividing cells in late mitotic phase, showing the fission yeast typical septum at the point of cytoplasmic division. The lower cell is in early M phase, having its chromosomes already segregated. Figure 1.02: Right, fission yeast cell cycle Diagrammatic representation of the S. pombe cell cycles with the interchange between the two occurring in G1 phase (Figure obtained and used with permission from Trevor Pemberton, University of Sussex). [...] S. pombe can undergo two different life cycles, either the vegetative (mitotic) cycle or the sporulation (meiotic) cycle, depending on the environment it is living in. These two cycles are shown in figure 2 with the change between the two occurring in cells at the G1 stage of the mitotic cycle. Under laboratory conditions, given all nutrients required, S. pombe prefers the haploid state. This makes it a favorable organism for genetic research since it ensures that introduced mutations are not masked by another wild type allele. [...]

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Diploma Thesis from the year 2005 in the subject Biology - Genetics / Gene Technology, grade: 1,1, TU Bergakademie Freiberg, 116 entries in the bibliography, language: English, abstract: 1. Introduction 1.1 Schizosaccharomyces pombe as a Model System S. pombe functions as a suitable model system since it is easy and inexpensive to rear, has a convenient size, a short life cycle, and is genetically manipulable. As a unicellular eukaryote, the fission yeast S. pombe can exist either in a haploid or diploid state and possesses two different mating types (h+ and h-). The wild type, however, is h90, which means it can switch mating type. Figure 1.01: Left, picture of S. pombe cells At top are two dividing cells in late mitotic phase, showing the fission yeast typical septum at the point of cytoplasmic division. The lower cell is in early M phase, having its chromosomes already segregated. Figure 1.02: Right, fission yeast cell cycle Diagrammatic representation of the S. pombe cell cycles with the interchange between the two occurring in G1 phase (Figure obtained and used with permission from Trevor Pemberton, University of Sussex). [...] S. pombe can undergo two different life cycles, either the vegetative (mitotic) cycle or the sporulation (meiotic) cycle, depending on the environment it is living in. These two cycles are shown in figure 2 with the change between the two occurring in cells at the G1 stage of the mitotic cycle. Under laboratory conditions, given all nutrients required, S. pombe prefers the haploid state. This makes it a favorable organism for genetic research since it ensures that introduced mutations are not masked by another wild type allele. [...]

More books from GRIN Publishing

Cover of the book Criteria for the Appropriate Solution of Problems of Local Importance in Selected EU-Member States by Michael Sassen
Cover of the book Differences of culture by Michael Sassen
Cover of the book What is a group and how does a group function? Group dynamics and the model according to Bruce Tuckman and Ruth Cohn by Michael Sassen
Cover of the book Survey on Activities of Swiss Manufacturing Companies in China with special focus on M&A by Michael Sassen
Cover of the book The Arbitrage Pricing Theory as an Approach to Capital Asset Valuation by Michael Sassen
Cover of the book Diversification Strategies of Nokia by Michael Sassen
Cover of the book Transcendentalism by Ralph W. Emerson by Michael Sassen
Cover of the book Transnational Political Practices of Turkish and Kurdish Organisations in Germany by Michael Sassen
Cover of the book Why do they rule Japan - The Nature of Japanese Elites by Michael Sassen
Cover of the book Chances and challenges. The consequences for the Baltic states' foreign and security policy after EU and NATO enlargement. by Michael Sassen
Cover of the book Kunst und Kunstpolitik in der DDR by Michael Sassen
Cover of the book The Male and the Female in Tennessee Williams's Plays by Michael Sassen
Cover of the book Why is the Present Perfect such a problematic tense? by Michael Sassen
Cover of the book The impact of non-governmental organisations (NGOs) on both the processes and machinery of diplomacy by Michael Sassen
Cover of the book Communitarianism and Amitai Etzioni by Michael Sassen
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy