Global Transcriptional Responses of Fission Yeast to Glucose Starvation Stress

Nonfiction, Science & Nature, Science, Biological Sciences, Genetics
Cover of the book Global Transcriptional Responses of Fission Yeast to Glucose Starvation Stress by Michael Sassen, GRIN Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Michael Sassen ISBN: 9783638400572
Publisher: GRIN Publishing Publication: July 20, 2005
Imprint: GRIN Publishing Language: English
Author: Michael Sassen
ISBN: 9783638400572
Publisher: GRIN Publishing
Publication: July 20, 2005
Imprint: GRIN Publishing
Language: English

Diploma Thesis from the year 2005 in the subject Biology - Genetics / Gene Technology, grade: 1,1, TU Bergakademie Freiberg, 116 entries in the bibliography, language: English, abstract: 1. Introduction 1.1 Schizosaccharomyces pombe as a Model System S. pombe functions as a suitable model system since it is easy and inexpensive to rear, has a convenient size, a short life cycle, and is genetically manipulable. As a unicellular eukaryote, the fission yeast S. pombe can exist either in a haploid or diploid state and possesses two different mating types (h+ and h-). The wild type, however, is h90, which means it can switch mating type. Figure 1.01: Left, picture of S. pombe cells At top are two dividing cells in late mitotic phase, showing the fission yeast typical septum at the point of cytoplasmic division. The lower cell is in early M phase, having its chromosomes already segregated. Figure 1.02: Right, fission yeast cell cycle Diagrammatic representation of the S. pombe cell cycles with the interchange between the two occurring in G1 phase (Figure obtained and used with permission from Trevor Pemberton, University of Sussex). [...] S. pombe can undergo two different life cycles, either the vegetative (mitotic) cycle or the sporulation (meiotic) cycle, depending on the environment it is living in. These two cycles are shown in figure 2 with the change between the two occurring in cells at the G1 stage of the mitotic cycle. Under laboratory conditions, given all nutrients required, S. pombe prefers the haploid state. This makes it a favorable organism for genetic research since it ensures that introduced mutations are not masked by another wild type allele. [...]

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Diploma Thesis from the year 2005 in the subject Biology - Genetics / Gene Technology, grade: 1,1, TU Bergakademie Freiberg, 116 entries in the bibliography, language: English, abstract: 1. Introduction 1.1 Schizosaccharomyces pombe as a Model System S. pombe functions as a suitable model system since it is easy and inexpensive to rear, has a convenient size, a short life cycle, and is genetically manipulable. As a unicellular eukaryote, the fission yeast S. pombe can exist either in a haploid or diploid state and possesses two different mating types (h+ and h-). The wild type, however, is h90, which means it can switch mating type. Figure 1.01: Left, picture of S. pombe cells At top are two dividing cells in late mitotic phase, showing the fission yeast typical septum at the point of cytoplasmic division. The lower cell is in early M phase, having its chromosomes already segregated. Figure 1.02: Right, fission yeast cell cycle Diagrammatic representation of the S. pombe cell cycles with the interchange between the two occurring in G1 phase (Figure obtained and used with permission from Trevor Pemberton, University of Sussex). [...] S. pombe can undergo two different life cycles, either the vegetative (mitotic) cycle or the sporulation (meiotic) cycle, depending on the environment it is living in. These two cycles are shown in figure 2 with the change between the two occurring in cells at the G1 stage of the mitotic cycle. Under laboratory conditions, given all nutrients required, S. pombe prefers the haploid state. This makes it a favorable organism for genetic research since it ensures that introduced mutations are not masked by another wild type allele. [...]

More books from GRIN Publishing

Cover of the book How did the powers of the U.S. President and the U.S. Congress, as well as their relation, change during the Vietnam War? by Michael Sassen
Cover of the book Humor in Mark Twain's 'The Awful German Language' by Michael Sassen
Cover of the book The Green Revolution - A mixed blessing? by Michael Sassen
Cover of the book German immigrants in the Chicago area by Michael Sassen
Cover of the book Symbolism of the Scottish Devolution by Michael Sassen
Cover of the book Land use in the Greater Mekong Subregion - A Challenge for Society, Economy and Biodiversity by Michael Sassen
Cover of the book The Societas Europaea in Germany in particular in the context of the theory controversy in the international corporate law by Michael Sassen
Cover of the book Migrating from Oil- to Electricity-Powered Vehicles: Modeling Germany's Transition to the EV until 2040 in System Dynamics by Michael Sassen
Cover of the book Wertorientierte Anreizgestaltung by Michael Sassen
Cover of the book Folk Etymology as a Linguistic Phenomenon by Michael Sassen
Cover of the book The impacts of plastic pollution in the North Pacific Ocean and possible solutions by Michael Sassen
Cover of the book Shakespeare's Authorship Question. A Short Input to a Long Discussion by Michael Sassen
Cover of the book Building social Europe through the open method of coordination by Michael Sassen
Cover of the book Civil War Onset and the 'Third Debate' by Michael Sassen
Cover of the book Economic Development in Cambodia by Michael Sassen
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy