Fundamentals of Predictive Text Mining

Nonfiction, Computers, Database Management, Advanced Computing, General Computing
Cover of the book Fundamentals of Predictive Text Mining by Sholom M. Weiss, Nitin Indurkhya, Tong Zhang, Springer London
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Sholom M. Weiss, Nitin Indurkhya, Tong Zhang ISBN: 9781849962261
Publisher: Springer London Publication: June 14, 2010
Imprint: Springer Language: English
Author: Sholom M. Weiss, Nitin Indurkhya, Tong Zhang
ISBN: 9781849962261
Publisher: Springer London
Publication: June 14, 2010
Imprint: Springer
Language: English

One consequence of the pervasive use of computers is that most documents originate in digital form. Widespread use of the Internet makes them readily available. Text mining – the process of analyzing unstructured natural-language text – is concerned with how to extract information from these documents. Developed from the authors’ highly successful Springer reference on text mining, Fundamentals of Predictive Text Mining is an introductory textbook and guide to this rapidly evolving field. Integrating topics spanning the varied disciplines of data mining, machine learning, databases, and computational linguistics, this uniquely useful book also provides practical advice for text mining. In-depth discussions are presented on issues of document classification, information retrieval, clustering and organizing documents, information extraction, web-based data-sourcing, and prediction and evaluation. Background on data mining is beneficial, but not essential. Where advanced concepts are discussed that require mathematical maturity for a proper understanding, intuitive explanations are also provided for less advanced readers. Topics and features: presents a comprehensive, practical and easy-to-read introduction to text mining; includes chapter summaries, useful historical and bibliographic remarks, and classroom-tested exercises for each chapter; explores the application and utility of each method, as well as the optimum techniques for specific scenarios; provides several descriptive case studies that take readers from problem description to systems deployment in the real world; includes access to industrial-strength text-mining software that runs on any computer; describes methods that rely on basic statistical techniques, thus allowing for relevance to all languages (not just English); contains links to free downloadable software and other supplementary instruction material. Fundamentals of Predictive Text Mining is an essential resource for IT professionals and managers, as well as a key text for advanced undergraduate computer science students and beginning graduate students. Dr. Sholom M. Weiss is a Research Staff Member with the IBM Predictive Modeling group, in Yorktown Heights, New York, and Professor Emeritus of Computer Science at Rutgers University. Dr. Nitin Indurkhya is Professor at the School of Computer Science and Engineering, University of New South Wales, Australia, as well as founder and president of data-mining consulting company Data-Miner Pty Ltd. Dr. Tong Zhang is Associate Professor at the Department of Statistics and Biostatistics at Rutgers University, New Jersey.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

One consequence of the pervasive use of computers is that most documents originate in digital form. Widespread use of the Internet makes them readily available. Text mining – the process of analyzing unstructured natural-language text – is concerned with how to extract information from these documents. Developed from the authors’ highly successful Springer reference on text mining, Fundamentals of Predictive Text Mining is an introductory textbook and guide to this rapidly evolving field. Integrating topics spanning the varied disciplines of data mining, machine learning, databases, and computational linguistics, this uniquely useful book also provides practical advice for text mining. In-depth discussions are presented on issues of document classification, information retrieval, clustering and organizing documents, information extraction, web-based data-sourcing, and prediction and evaluation. Background on data mining is beneficial, but not essential. Where advanced concepts are discussed that require mathematical maturity for a proper understanding, intuitive explanations are also provided for less advanced readers. Topics and features: presents a comprehensive, practical and easy-to-read introduction to text mining; includes chapter summaries, useful historical and bibliographic remarks, and classroom-tested exercises for each chapter; explores the application and utility of each method, as well as the optimum techniques for specific scenarios; provides several descriptive case studies that take readers from problem description to systems deployment in the real world; includes access to industrial-strength text-mining software that runs on any computer; describes methods that rely on basic statistical techniques, thus allowing for relevance to all languages (not just English); contains links to free downloadable software and other supplementary instruction material. Fundamentals of Predictive Text Mining is an essential resource for IT professionals and managers, as well as a key text for advanced undergraduate computer science students and beginning graduate students. Dr. Sholom M. Weiss is a Research Staff Member with the IBM Predictive Modeling group, in Yorktown Heights, New York, and Professor Emeritus of Computer Science at Rutgers University. Dr. Nitin Indurkhya is Professor at the School of Computer Science and Engineering, University of New South Wales, Australia, as well as founder and president of data-mining consulting company Data-Miner Pty Ltd. Dr. Tong Zhang is Associate Professor at the Department of Statistics and Biostatistics at Rutgers University, New Jersey.

More books from Springer London

Cover of the book Principles of Gynaecological Surgery by Sholom M. Weiss, Nitin Indurkhya, Tong Zhang
Cover of the book Guide to Intelligent Data Analysis by Sholom M. Weiss, Nitin Indurkhya, Tong Zhang
Cover of the book Autoimmune Diseases by Sholom M. Weiss, Nitin Indurkhya, Tong Zhang
Cover of the book Reoperations in Cardiac Surgery by Sholom M. Weiss, Nitin Indurkhya, Tong Zhang
Cover of the book Leadership in Healthcare by Sholom M. Weiss, Nitin Indurkhya, Tong Zhang
Cover of the book Pathology of the Pancreas by Sholom M. Weiss, Nitin Indurkhya, Tong Zhang
Cover of the book Concise Guide to Databases by Sholom M. Weiss, Nitin Indurkhya, Tong Zhang
Cover of the book Requirements Engineering by Sholom M. Weiss, Nitin Indurkhya, Tong Zhang
Cover of the book Aspects of Safety Management by Sholom M. Weiss, Nitin Indurkhya, Tong Zhang
Cover of the book Urological Emergencies In Clinical Practice by Sholom M. Weiss, Nitin Indurkhya, Tong Zhang
Cover of the book Control Design and Analysis for Underactuated Robotic Systems by Sholom M. Weiss, Nitin Indurkhya, Tong Zhang
Cover of the book Creative Engineering Design Assessment by Sholom M. Weiss, Nitin Indurkhya, Tong Zhang
Cover of the book Middleware Solutions for the Internet of Things by Sholom M. Weiss, Nitin Indurkhya, Tong Zhang
Cover of the book Surgical Repair and Reconstruction in Rheumatoid Disease by Sholom M. Weiss, Nitin Indurkhya, Tong Zhang
Cover of the book Leavitt Path Algebras by Sholom M. Weiss, Nitin Indurkhya, Tong Zhang
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy