Electron Beam-Specimen Interactions and Simulation Methods in Microscopy

Nonfiction, Science & Nature, Technology, Material Science
Cover of the book Electron Beam-Specimen Interactions and Simulation Methods in Microscopy by Budhika G. Mendis, Wiley
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Budhika G. Mendis ISBN: 9781118696651
Publisher: Wiley Publication: March 21, 2018
Imprint: Wiley Language: English
Author: Budhika G. Mendis
ISBN: 9781118696651
Publisher: Wiley
Publication: March 21, 2018
Imprint: Wiley
Language: English

A detailed presentation of the physics of electron beam-specimen interactions

Electron microscopy is one of the most widely used characterisation techniques in materials science, physics, chemistry, and the life sciences. This book examines the interactions between the electron beam and the specimen, the fundamental starting point for all electron microscopy. Detailed explanations are provided to help reinforce understanding, and new topics at the forefront of current research are presented. It provides readers with a deeper knowledge of the subject, particularly if they intend to simulate electron beam-specimen interactions as part of their research projects. The book covers the vast majority of commonly used electron microscopy techniques. Some of the more advanced topics (annular bright field and dopant atom imaging, atomic resolution chemical analysis, band gap measurements) provide additional value, especially for readers who have access to advanced instrumentation, such as aberration-corrected and monochromated microscopes.

Electron Beam-Specimen Interactions and Simulation Methods in Microscopy offers enlightening coverage of: the Monte-Carlo Method; Multislice Simulations; Bloch Waves in Conventional and Analytical Transmission Electron Microscopy; Bloch Waves in Scanning Transmission Electron Microscopy; Low Energy Loss and Core Loss EELS. It also supplements each chapter with clear diagrams and provides appendices at the end of the book to assist with the pre-requisites.

  • A detailed presentation of the physics of electron beam-specimen interactions
  • Each chapter first discusses the background physics before moving onto simulation methods
  • Uses computer programs to simulate electron beam-specimen interactions (presented in the form of case studies)
  • Includes hot topics brought to light due to advances in instrumentation (particularly aberration-corrected and monochromated microscopes)

Electron Beam-Specimen Interactions and Simulation Methods in Microscopy benefits students undertaking higher education degrees, practicing electron microscopists who wish to learn more about their subject, and researchers who wish to obtain a deeper understanding of the subject matter for their own work.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

A detailed presentation of the physics of electron beam-specimen interactions

Electron microscopy is one of the most widely used characterisation techniques in materials science, physics, chemistry, and the life sciences. This book examines the interactions between the electron beam and the specimen, the fundamental starting point for all electron microscopy. Detailed explanations are provided to help reinforce understanding, and new topics at the forefront of current research are presented. It provides readers with a deeper knowledge of the subject, particularly if they intend to simulate electron beam-specimen interactions as part of their research projects. The book covers the vast majority of commonly used electron microscopy techniques. Some of the more advanced topics (annular bright field and dopant atom imaging, atomic resolution chemical analysis, band gap measurements) provide additional value, especially for readers who have access to advanced instrumentation, such as aberration-corrected and monochromated microscopes.

Electron Beam-Specimen Interactions and Simulation Methods in Microscopy offers enlightening coverage of: the Monte-Carlo Method; Multislice Simulations; Bloch Waves in Conventional and Analytical Transmission Electron Microscopy; Bloch Waves in Scanning Transmission Electron Microscopy; Low Energy Loss and Core Loss EELS. It also supplements each chapter with clear diagrams and provides appendices at the end of the book to assist with the pre-requisites.

Electron Beam-Specimen Interactions and Simulation Methods in Microscopy benefits students undertaking higher education degrees, practicing electron microscopists who wish to learn more about their subject, and researchers who wish to obtain a deeper understanding of the subject matter for their own work.

More books from Wiley

Cover of the book Drug-Drug Interactions for Therapeutic Biologics by Budhika G. Mendis
Cover of the book Research Methods in Clinical Linguistics and Phonetics by Budhika G. Mendis
Cover of the book Debt Markets and Analysis by Budhika G. Mendis
Cover of the book Research Methods for Construction by Budhika G. Mendis
Cover of the book Personal Finance in Your 20s and 30s For Dummies by Budhika G. Mendis
Cover of the book Parenting For Dummies by Budhika G. Mendis
Cover of the book Discourse Readjustment(s) in Contemporary English by Budhika G. Mendis
Cover of the book The HPLC Expert by Budhika G. Mendis
Cover of the book Cleft Lip and Palate Management by Budhika G. Mendis
Cover of the book Dementia by Budhika G. Mendis
Cover of the book CFD Modeling and Simulation in Materials Processing 2016 by Budhika G. Mendis
Cover of the book Great People Decisions by Budhika G. Mendis
Cover of the book Social Policy for Social Work by Budhika G. Mendis
Cover of the book Mathematical Foundations and Applications of Graph Entropy by Budhika G. Mendis
Cover of the book Basic Geological Mapping by Budhika G. Mendis
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy