Electrochemical Power Sources: Fundamentals, Systems, and Applications

Li-Battery Safety

Nonfiction, Science & Nature, Technology, Engineering, Chemical & Biochemical
Cover of the book Electrochemical Power Sources: Fundamentals, Systems, and Applications by , Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9780444640086
Publisher: Elsevier Science Publication: September 20, 2018
Imprint: Elsevier Language: English
Author:
ISBN: 9780444640086
Publisher: Elsevier Science
Publication: September 20, 2018
Imprint: Elsevier
Language: English

Safety of Lithium Batteries describes how best to assure safety during all phases of the life of Lithium ion batteries (production, transport, use, and disposal). About 5 billion Li-ion cells are produced each year, predominantly for use in consumer electronics. This book describes how the high-energy density and outstanding performance of Li-ion batteries will result in a large increase in the production of Li-ion cells for electric drive train vehicle (xEV) and battery energy storage (BES or EES) purposes. The high-energy density of Li battery systems comes with special hazards related to the materials employed in these systems.

The manufacturers of cells and batteries have strongly reduced the hazard probability by a number of measures. However, absolute safety of the Li system is not given as multiple incidents in consumer electronics have shown.

  • Presents the relationship between chemical and structure material properties and cell safety
  • Relates cell and battery design to safety as well as system operation parameters to safety
  • Outlines the influences of abuses on safety and the relationship to battery testing
  • Explores the limitations for transport and storage of cells and batteries
  • Includes recycling, disposal and second use of lithium ion batteries
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Safety of Lithium Batteries describes how best to assure safety during all phases of the life of Lithium ion batteries (production, transport, use, and disposal). About 5 billion Li-ion cells are produced each year, predominantly for use in consumer electronics. This book describes how the high-energy density and outstanding performance of Li-ion batteries will result in a large increase in the production of Li-ion cells for electric drive train vehicle (xEV) and battery energy storage (BES or EES) purposes. The high-energy density of Li battery systems comes with special hazards related to the materials employed in these systems.

The manufacturers of cells and batteries have strongly reduced the hazard probability by a number of measures. However, absolute safety of the Li system is not given as multiple incidents in consumer electronics have shown.

More books from Elsevier Science

Cover of the book Introduction to Homeland Security by
Cover of the book Elastomers and Components by
Cover of the book Modelling of Mechanical Systems: Structural Elements by
Cover of the book Advances in Food and Nutrition Research by
Cover of the book World Seas: An Environmental Evaluation by
Cover of the book Modeling of Chemical Reactions by
Cover of the book Everyday Applied Geophysics 1 by
Cover of the book Fed-Batch Fermentation by
Cover of the book Pharmacology in Drug Discovery by
Cover of the book Facility Integrity Management by
Cover of the book The Effective Security Officer's Training Manual by
Cover of the book Computing and Visualization for Intravascular Imaging and Computer-Assisted Stenting by
Cover of the book Advances in Agronomy by
Cover of the book Ecological Networks in an Agricultural World by
Cover of the book Dietary Interventions in Liver Disease by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy