Deep Learning for Biometrics

Nonfiction, Computers, Advanced Computing, Engineering, Computer Vision, Artificial Intelligence, General Computing
Cover of the book Deep Learning for Biometrics by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319616575
Publisher: Springer International Publishing Publication: August 1, 2017
Imprint: Springer Language: English
Author:
ISBN: 9783319616575
Publisher: Springer International Publishing
Publication: August 1, 2017
Imprint: Springer
Language: English

This timely text/reference presents a broad overview of advanced deep learning architectures for learning effective feature representation for perceptual and biometrics-related tasks. The text offers a showcase of cutting-edge research on the use of convolutional neural networks (CNN) in face, iris, fingerprint, and vascular biometric systems, in addition to surveillance systems that use soft biometrics. Issues of biometrics security are also examined.

Topics and features: addresses the application of deep learning to enhance the performance of biometrics identification across a wide range of different biometrics modalities; revisits  deep learning for face biometrics, offering insights from neuroimaging, and provides comparison with popular CNN-based architectures for face recognition; examines deep learning for state-of-the-art latent fingerprint and finger-vein recognition, as well as iris recognition; discusses deep learning for soft biometrics, including approaches for gesture-based identification, gender classification, and tattoo recognition; investigates deep learning for biometrics security, covering biometrics template protection methods, and liveness detection to protect against fake biometrics samples; presents contributions from a global selection of pre-eminent experts in the field representing academia, industry and government laboratories.

Providing both an accessible introduction to the practical applications of deep learning in biometrics, and a comprehensive coverage of the entire spectrum of biometric modalities, this authoritative volume will be of great interest to all researchers, practitioners and students involved in related areas of computer vision, pattern recognition and machine learning.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This timely text/reference presents a broad overview of advanced deep learning architectures for learning effective feature representation for perceptual and biometrics-related tasks. The text offers a showcase of cutting-edge research on the use of convolutional neural networks (CNN) in face, iris, fingerprint, and vascular biometric systems, in addition to surveillance systems that use soft biometrics. Issues of biometrics security are also examined.

Topics and features: addresses the application of deep learning to enhance the performance of biometrics identification across a wide range of different biometrics modalities; revisits  deep learning for face biometrics, offering insights from neuroimaging, and provides comparison with popular CNN-based architectures for face recognition; examines deep learning for state-of-the-art latent fingerprint and finger-vein recognition, as well as iris recognition; discusses deep learning for soft biometrics, including approaches for gesture-based identification, gender classification, and tattoo recognition; investigates deep learning for biometrics security, covering biometrics template protection methods, and liveness detection to protect against fake biometrics samples; presents contributions from a global selection of pre-eminent experts in the field representing academia, industry and government laboratories.

Providing both an accessible introduction to the practical applications of deep learning in biometrics, and a comprehensive coverage of the entire spectrum of biometric modalities, this authoritative volume will be of great interest to all researchers, practitioners and students involved in related areas of computer vision, pattern recognition and machine learning.

More books from Springer International Publishing

Cover of the book Rohit Parikh on Logic, Language and Society by
Cover of the book Nutritional Influences on Bone Health by
Cover of the book Wireless Algorithms, Systems, and Applications by
Cover of the book Recollections of a Jewish Mathematician in Germany by
Cover of the book War and Peace in Africa’s Great Lakes Region by
Cover of the book Polypropylene Nanofibers by
Cover of the book Machine Scheduling to Minimize Weighted Completion Times by
Cover of the book Victorian Narratives of the Recent Past by
Cover of the book Electromagnetic and Optical Pulse Propagation by
Cover of the book Advances in Computational Intelligence by
Cover of the book An Overview of High-energy Ball Milled Nanocrystalline Aluminum Alloys by
Cover of the book Astronomy Adventures and Vacations by
Cover of the book The EU after Lisbon by
Cover of the book Optimization with PDE Constraints by
Cover of the book Anatomic Shoulder Arthroplasty by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy