Deep Learning for Biometrics

Nonfiction, Computers, Advanced Computing, Engineering, Computer Vision, Artificial Intelligence, General Computing
Cover of the book Deep Learning for Biometrics by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319616575
Publisher: Springer International Publishing Publication: August 1, 2017
Imprint: Springer Language: English
Author:
ISBN: 9783319616575
Publisher: Springer International Publishing
Publication: August 1, 2017
Imprint: Springer
Language: English

This timely text/reference presents a broad overview of advanced deep learning architectures for learning effective feature representation for perceptual and biometrics-related tasks. The text offers a showcase of cutting-edge research on the use of convolutional neural networks (CNN) in face, iris, fingerprint, and vascular biometric systems, in addition to surveillance systems that use soft biometrics. Issues of biometrics security are also examined.

Topics and features: addresses the application of deep learning to enhance the performance of biometrics identification across a wide range of different biometrics modalities; revisits  deep learning for face biometrics, offering insights from neuroimaging, and provides comparison with popular CNN-based architectures for face recognition; examines deep learning for state-of-the-art latent fingerprint and finger-vein recognition, as well as iris recognition; discusses deep learning for soft biometrics, including approaches for gesture-based identification, gender classification, and tattoo recognition; investigates deep learning for biometrics security, covering biometrics template protection methods, and liveness detection to protect against fake biometrics samples; presents contributions from a global selection of pre-eminent experts in the field representing academia, industry and government laboratories.

Providing both an accessible introduction to the practical applications of deep learning in biometrics, and a comprehensive coverage of the entire spectrum of biometric modalities, this authoritative volume will be of great interest to all researchers, practitioners and students involved in related areas of computer vision, pattern recognition and machine learning.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This timely text/reference presents a broad overview of advanced deep learning architectures for learning effective feature representation for perceptual and biometrics-related tasks. The text offers a showcase of cutting-edge research on the use of convolutional neural networks (CNN) in face, iris, fingerprint, and vascular biometric systems, in addition to surveillance systems that use soft biometrics. Issues of biometrics security are also examined.

Topics and features: addresses the application of deep learning to enhance the performance of biometrics identification across a wide range of different biometrics modalities; revisits  deep learning for face biometrics, offering insights from neuroimaging, and provides comparison with popular CNN-based architectures for face recognition; examines deep learning for state-of-the-art latent fingerprint and finger-vein recognition, as well as iris recognition; discusses deep learning for soft biometrics, including approaches for gesture-based identification, gender classification, and tattoo recognition; investigates deep learning for biometrics security, covering biometrics template protection methods, and liveness detection to protect against fake biometrics samples; presents contributions from a global selection of pre-eminent experts in the field representing academia, industry and government laboratories.

Providing both an accessible introduction to the practical applications of deep learning in biometrics, and a comprehensive coverage of the entire spectrum of biometric modalities, this authoritative volume will be of great interest to all researchers, practitioners and students involved in related areas of computer vision, pattern recognition and machine learning.

More books from Springer International Publishing

Cover of the book Provable Security by
Cover of the book Defects at Oxide Surfaces by
Cover of the book Cognitive Wireless Networks Using the CSS Technology by
Cover of the book Physical and Mathematical Modeling of Earth and Environment Processes (2018) by
Cover of the book Practicing Servant Leadership by
Cover of the book Therapeutic Ultrasound by
Cover of the book Deep Learning Classifiers with Memristive Networks by
Cover of the book Tools for High Performance Computing 2017 by
Cover of the book Homeopathy - The Undiluted Facts by
Cover of the book Digital Signal Processing and Spectral Analysis for Scientists by
Cover of the book A Group Theoretic Approach to Quantum Information by
Cover of the book Organization and Management of IVF Units by
Cover of the book Complex Analysis with Applications by
Cover of the book The Development of Immunologic Competence by
Cover of the book Tourism, Culture and Heritage in a Smart Economy by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy