Data Storage for Social Networks

A Socially Aware Approach

Nonfiction, Science & Nature, Mathematics, Applied, Computers, Database Management
Cover of the book Data Storage for Social Networks by Duc A. Tran, Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Duc A. Tran ISBN: 9781461446361
Publisher: Springer New York Publication: August 15, 2012
Imprint: Springer Language: English
Author: Duc A. Tran
ISBN: 9781461446361
Publisher: Springer New York
Publication: August 15, 2012
Imprint: Springer
Language: English

Evidenced by the success of Facebook, Twitter, and LinkedIn, online social networks (OSNs) have become ubiquitous, offering novel ways for people to access information and communicate with each other. As the increasing popularity of social networking is undeniable, scalability is an important issue for any OSN that wants to serve a large number of users. Storing user data for the entire network on a single server can quickly lead to a bottleneck, and, consequently, more servers are needed to expand storage capacity and lower data request traffic per server. Adding more servers is just one step to address scalability.

The next step is to determine how best to store the data across multiple servers. This problem has been widely-studied in the literature of distributed and database systems. OSNs, however, represent a different class of data systems. When a user spends time on a social network, the data mostly requested is her own and that of her friends; e.g., in Facebook or Twitter, these data are the status updates posted by herself as well as that posted by the friends. This so-called social locality should be taken into account when determining the server locations to store these data, so that when a user issues a read request, all its relevant data can be returned quickly and efficiently. Social locality is not a design factor in traditional storage systems where data requests are always processed independently.

Even for today’s OSNs, social locality is not yet considered in their data partition schemes. These schemes rely on  distributed hash tables (DHT), using consistent hashing to assign the users’ data to the servers. The random nature of DHT leads to weak social locality which has been shown to result in poor performance under heavy request loads.

Data Storage for Social Networks: A Socially Aware Approach is aimed at reviewing the current literature of data storage for online social networks and discussing new methods that take into account social awareness in designing efficient data storage.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Evidenced by the success of Facebook, Twitter, and LinkedIn, online social networks (OSNs) have become ubiquitous, offering novel ways for people to access information and communicate with each other. As the increasing popularity of social networking is undeniable, scalability is an important issue for any OSN that wants to serve a large number of users. Storing user data for the entire network on a single server can quickly lead to a bottleneck, and, consequently, more servers are needed to expand storage capacity and lower data request traffic per server. Adding more servers is just one step to address scalability.

The next step is to determine how best to store the data across multiple servers. This problem has been widely-studied in the literature of distributed and database systems. OSNs, however, represent a different class of data systems. When a user spends time on a social network, the data mostly requested is her own and that of her friends; e.g., in Facebook or Twitter, these data are the status updates posted by herself as well as that posted by the friends. This so-called social locality should be taken into account when determining the server locations to store these data, so that when a user issues a read request, all its relevant data can be returned quickly and efficiently. Social locality is not a design factor in traditional storage systems where data requests are always processed independently.

Even for today’s OSNs, social locality is not yet considered in their data partition schemes. These schemes rely on  distributed hash tables (DHT), using consistent hashing to assign the users’ data to the servers. The random nature of DHT leads to weak social locality which has been shown to result in poor performance under heavy request loads.

Data Storage for Social Networks: A Socially Aware Approach is aimed at reviewing the current literature of data storage for online social networks and discussing new methods that take into account social awareness in designing efficient data storage.

More books from Springer New York

Cover of the book Network Science and Cybersecurity by Duc A. Tran
Cover of the book Derivatives of Inner Functions by Duc A. Tran
Cover of the book Statistical Methods for Ranking Data by Duc A. Tran
Cover of the book Neuroinflammation and Neurodegeneration by Duc A. Tran
Cover of the book Advances in the Theory of Numbers by Duc A. Tran
Cover of the book Surgery by Duc A. Tran
Cover of the book Alien Gene Transfer in Crop Plants, Volume 2 by Duc A. Tran
Cover of the book True and False Recovered Memories by Duc A. Tran
Cover of the book Fundamentals of Chromatin by Duc A. Tran
Cover of the book Identifying, Assessing, and Treating Early Onset Schizophrenia at School by Duc A. Tran
Cover of the book Fundamentals of Maxillofacial Surgery by Duc A. Tran
Cover of the book Foundations of Bilingual Memory by Duc A. Tran
Cover of the book Practical Studies in E-Government by Duc A. Tran
Cover of the book Dynamic Models of Infectious Diseases by Duc A. Tran
Cover of the book Handbook of Gender Research in Psychology by Duc A. Tran
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy