Bacterial Activation of Type I Interferons

Nonfiction, Science & Nature, Science, Biological Sciences, Bacteriology, Health & Well Being, Medical, Medical Science, Immunology
Cover of the book Bacterial Activation of Type I Interferons by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319094984
Publisher: Springer International Publishing Publication: October 6, 2014
Imprint: Springer Language: English
Author:
ISBN: 9783319094984
Publisher: Springer International Publishing
Publication: October 6, 2014
Imprint: Springer
Language: English

The type I interferon (IFN) signaling pathway is well recognized as a pathway activated by viral infections. It is activated by a variety of microbial pattern recognition receptors including the Toll-like receptors, NOD-like receptors and several cytosolic receptors. Activation of the type I IFN pathway leads to the production of both antiviral factors and products that influence immune cell function. More recently it has been shown that bacteria are also capable of activating this pathway.

Bacterial Activation of Type I Interferonsreviews both the current understanding of how different bacterial species are able to activate this pathway as well as the influence type I IFNs have on the outcome to infection. Several different bacterial species are covered, spanning Gram positive and Gram negative, intracellular, extracellular, and different host infection sites. An introduction to the pathogenesis of each organism is provided, and the signaling molecules involved in the activation of the type I IFN pathway and the role it plays in animal infection models are also covered.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The type I interferon (IFN) signaling pathway is well recognized as a pathway activated by viral infections. It is activated by a variety of microbial pattern recognition receptors including the Toll-like receptors, NOD-like receptors and several cytosolic receptors. Activation of the type I IFN pathway leads to the production of both antiviral factors and products that influence immune cell function. More recently it has been shown that bacteria are also capable of activating this pathway.

Bacterial Activation of Type I Interferonsreviews both the current understanding of how different bacterial species are able to activate this pathway as well as the influence type I IFNs have on the outcome to infection. Several different bacterial species are covered, spanning Gram positive and Gram negative, intracellular, extracellular, and different host infection sites. An introduction to the pathogenesis of each organism is provided, and the signaling molecules involved in the activation of the type I IFN pathway and the role it plays in animal infection models are also covered.

More books from Springer International Publishing

Cover of the book Knowledge Transfer between Computer Vision and Text Mining by
Cover of the book The Transformation of Georgia from 2004 to 2012 by
Cover of the book Surveillance in Action by
Cover of the book Searching for Wisdom In Movies by
Cover of the book Nordic Contributions in IS Research by
Cover of the book Reconciling Law and Morality in Human Rights Discourse by
Cover of the book On Political Culture, Cultural Policy, Art and Politics by
Cover of the book The Royal Society and the Discovery of the Two Sicilies by
Cover of the book The Southern African Development Community (SADC) and the European Union (EU) by
Cover of the book An Introduction to Mine Hydrogeology by
Cover of the book New Organizational Forms, Controls, and Institutions by
Cover of the book Equations Involving Malliavin Calculus Operators by
Cover of the book Multiple Time Scale Dynamics by
Cover of the book Form Versus Function: Theory and Models for Neuronal Substrates by
Cover of the book Mathematics Teaching and Learning by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy