Asymptotic Expansion of a Partition Function Related to the Sinh-model

Nonfiction, Science & Nature, Science, Physics, Mathematical Physics, Mathematics, Statistics
Cover of the book Asymptotic Expansion of a Partition Function Related to the Sinh-model by Gaëtan Borot, Alice Guionnet, Karol K. Kozlowski, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Gaëtan Borot, Alice Guionnet, Karol K. Kozlowski ISBN: 9783319333793
Publisher: Springer International Publishing Publication: December 8, 2016
Imprint: Springer Language: English
Author: Gaëtan Borot, Alice Guionnet, Karol K. Kozlowski
ISBN: 9783319333793
Publisher: Springer International Publishing
Publication: December 8, 2016
Imprint: Springer
Language: English

This book elaborates on the asymptotic behaviour, when N is large, of certain N-dimensional integrals which typically occur in random matrices, or in 1+1 dimensional quantum integrable models solvable by the quantum separation of variables. The introduction presents the underpinning motivations for this problem, a historical overview, and a summary of the strategy, which is applicable in greater generality. The core aims at proving an expansion up to o(1) for the logarithm of the partition function of the sinh-model. This is achieved by a combination of potential theory and large deviation theory so as to grasp the leading asymptotics described by an equilibrium measure, the Riemann-Hilbert approach to truncated Wiener-Hopf in order to analyse the equilibrium measure, the Schwinger-Dyson equations and the boostrap method to finally obtain an expansion of correlation functions and the one of the partition function. This book is addressed to researchers working in random matrices, statistical physics or integrable systems, or interested in recent developments of asymptotic analysis in those fields.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book elaborates on the asymptotic behaviour, when N is large, of certain N-dimensional integrals which typically occur in random matrices, or in 1+1 dimensional quantum integrable models solvable by the quantum separation of variables. The introduction presents the underpinning motivations for this problem, a historical overview, and a summary of the strategy, which is applicable in greater generality. The core aims at proving an expansion up to o(1) for the logarithm of the partition function of the sinh-model. This is achieved by a combination of potential theory and large deviation theory so as to grasp the leading asymptotics described by an equilibrium measure, the Riemann-Hilbert approach to truncated Wiener-Hopf in order to analyse the equilibrium measure, the Schwinger-Dyson equations and the boostrap method to finally obtain an expansion of correlation functions and the one of the partition function. This book is addressed to researchers working in random matrices, statistical physics or integrable systems, or interested in recent developments of asymptotic analysis in those fields.

More books from Springer International Publishing

Cover of the book Atlantic Water in the Nordic Seas by Gaëtan Borot, Alice Guionnet, Karol K. Kozlowski
Cover of the book Topological Interactions in Ring Polymers by Gaëtan Borot, Alice Guionnet, Karol K. Kozlowski
Cover of the book Multiplying Mighty Davids? by Gaëtan Borot, Alice Guionnet, Karol K. Kozlowski
Cover of the book Social Knowledge Management in Action by Gaëtan Borot, Alice Guionnet, Karol K. Kozlowski
Cover of the book Knowledge Science, Engineering and Management by Gaëtan Borot, Alice Guionnet, Karol K. Kozlowski
Cover of the book A Parametric Approach to Nonparametric Statistics by Gaëtan Borot, Alice Guionnet, Karol K. Kozlowski
Cover of the book Extended Abstracts Spring 2015 by Gaëtan Borot, Alice Guionnet, Karol K. Kozlowski
Cover of the book Simplicity: Ideals of Practice in Mathematics and the Arts by Gaëtan Borot, Alice Guionnet, Karol K. Kozlowski
Cover of the book Unconsciousness Between Phenomenology and Psychoanalysis by Gaëtan Borot, Alice Guionnet, Karol K. Kozlowski
Cover of the book Universal Access in Human-Computer Interaction. Interaction Techniques and Environments by Gaëtan Borot, Alice Guionnet, Karol K. Kozlowski
Cover of the book Prediction of Polymeric Membrane Separation and Purification Performances by Gaëtan Borot, Alice Guionnet, Karol K. Kozlowski
Cover of the book Mechanical Systems by Gaëtan Borot, Alice Guionnet, Karol K. Kozlowski
Cover of the book Logical Foundations of Mathematics and Computational Complexity by Gaëtan Borot, Alice Guionnet, Karol K. Kozlowski
Cover of the book Advances and Trends in Artificial Intelligence. From Theory to Practice by Gaëtan Borot, Alice Guionnet, Karol K. Kozlowski
Cover of the book Command Transitions in Public Administration by Gaëtan Borot, Alice Guionnet, Karol K. Kozlowski
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy