Applied Predictive Modeling

Nonfiction, Health & Well Being, Medical, Reference, Biostatistics, Science & Nature, Mathematics, Computers, Application Software
Cover of the book Applied Predictive Modeling by Max Kuhn, Kjell Johnson, Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Max Kuhn, Kjell Johnson ISBN: 9781461468493
Publisher: Springer New York Publication: May 17, 2013
Imprint: Springer Language: English
Author: Max Kuhn, Kjell Johnson
ISBN: 9781461468493
Publisher: Springer New York
Publication: May 17, 2013
Imprint: Springer
Language: English

This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics.

Dr. Kuhn is a Director of Non-Clinical Statistics at Pfizer Global R&D in Groton Connecticut. He has been applying predictive models in the pharmaceutical and diagnostic industries for over 15 years and is the author of a number of R packages. 

Dr. Johnson has more than a decade of statistical consulting and predictive modeling experience in pharmaceutical research and development.  He is a co-founder of Arbor Analytics, a firm specializing in predictive modeling and is a former Director of Statistics at Pfizer Global R&D.  His scholarly work centers on the application and development of statistical methodology and learning algorithms.

Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning.  The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems.  Addressing practical concerns extends beyond model fitting to topics such as handling class imbalance, selecting predictors, and pinpointing causes of poor model performance—all of which are problems that occur frequently in practice.
 
The text illustrates all parts of the modeling process through many hands-on, real-life examples.  And every chapter contains extensive R code for each step of the process.  The data sets and corresponding code are available in the book’s companion AppliedPredictiveModeling R package, which is freely available on the CRAN archive.
 
This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses.  To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package.
 
Readers and students interested in implementing the methods should have some basic knowledge of R.  And a handful of the more advanced topics require some mathematical knowledge.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics.

Dr. Kuhn is a Director of Non-Clinical Statistics at Pfizer Global R&D in Groton Connecticut. He has been applying predictive models in the pharmaceutical and diagnostic industries for over 15 years and is the author of a number of R packages. 

Dr. Johnson has more than a decade of statistical consulting and predictive modeling experience in pharmaceutical research and development.  He is a co-founder of Arbor Analytics, a firm specializing in predictive modeling and is a former Director of Statistics at Pfizer Global R&D.  His scholarly work centers on the application and development of statistical methodology and learning algorithms.

Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning.  The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems.  Addressing practical concerns extends beyond model fitting to topics such as handling class imbalance, selecting predictors, and pinpointing causes of poor model performance—all of which are problems that occur frequently in practice.
 
The text illustrates all parts of the modeling process through many hands-on, real-life examples.  And every chapter contains extensive R code for each step of the process.  The data sets and corresponding code are available in the book’s companion AppliedPredictiveModeling R package, which is freely available on the CRAN archive.
 
This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses.  To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package.
 
Readers and students interested in implementing the methods should have some basic knowledge of R.  And a handful of the more advanced topics require some mathematical knowledge.

More books from Springer New York

Cover of the book Toward Transformation in Social Knowledge by Max Kuhn, Kjell Johnson
Cover of the book Atlas of Esophagus and Stomach Pathology by Max Kuhn, Kjell Johnson
Cover of the book Drug Resistance in Cancer Cells by Max Kuhn, Kjell Johnson
Cover of the book Applied Evolutionary Anthropology by Max Kuhn, Kjell Johnson
Cover of the book Human System Responses to Disaster by Max Kuhn, Kjell Johnson
Cover of the book The Social Psychology of Creativity by Max Kuhn, Kjell Johnson
Cover of the book The Business of Bioscience by Max Kuhn, Kjell Johnson
Cover of the book Source-Synchronous Networks-On-Chip by Max Kuhn, Kjell Johnson
Cover of the book Making the DSM-5 by Max Kuhn, Kjell Johnson
Cover of the book RFID as an Infrastructure by Max Kuhn, Kjell Johnson
Cover of the book Electrical Transmission Systems and Smart Grids by Max Kuhn, Kjell Johnson
Cover of the book A Cross-Border-Only Regulation for Consumer Transactions in the EU by Max Kuhn, Kjell Johnson
Cover of the book Derivative Securities and Difference Methods by Max Kuhn, Kjell Johnson
Cover of the book Medical Applications of Colloids by Max Kuhn, Kjell Johnson
Cover of the book Genetics of Melanoma by Max Kuhn, Kjell Johnson
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy