2011 Nuclear Power Plant Sourcebook: Spent Nuclear Fuel and the Risks of Heatup After the Loss of Water - NRC Reports - Crisis at Japan's TEPCO Fukushima Daiichi Power Plant

Nonfiction, Science & Nature, Science, Physics, General Physics, Social & Cultural Studies, Political Science
Cover of the book 2011 Nuclear Power Plant Sourcebook: Spent Nuclear Fuel and the Risks of Heatup After the Loss of Water - NRC Reports - Crisis at Japan's TEPCO Fukushima Daiichi Power Plant by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781458091994
Publisher: Progressive Management Publication: March 16, 2011
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781458091994
Publisher: Progressive Management
Publication: March 16, 2011
Imprint: Smashwords Edition
Language: English

The crisis at the TEPCO Fukushima Daiichi Nuclear Power Station in Japan following the great earthquake and tsunami of March 11, 2011 has raised important issues about the safety of spent nuclear fuel rod storage, especially those located at the top of boiling water reactor (BWR) units. At press time, TEPCO is reporting that water levels in the spent nuclear fuel pools located above the reactors in the Number 3 and Number 4 units of the Fukushima Daiichi Power Station are heating up and running low on water. There is extreme concern that the fuel rods in those pools could overheat and possibly release large amounts of radiation. After a brief overview of the handling of spent nuclear fuels, we present two major studies for the Nuclear Regulatory Commission (NRC) which deal with the hazards of reactor spent fuel pools. The first report, by the Sandia Laboratories, specifically addresses the type of situation faced by TEPCO at Fukushima with boiling water reactors (BWR). The second report, by the Brookhaven National Laboratory, characterizes the radiological risks posed by storage of spent reactor fuel at commercial reactors. Finally, we reproduce a report by the GAO about the safety of spent nuclear fuel.

Allen Benjamin and others, writing in the Sandia report, state: "Analysis of spent fuel heatup following a hypothetical accident involving drainage of the storage pool is presented. Computations based upon a new computer code called SFUEL have been performed to assess the effect of decay time, fuel element design, storage rack design, packing density, room ventilation, drainage level, and other variables on the heatup characteristics of the spent fuel and to predict the conditions under which clad failure will occur. It has been found that the likelihood of clad failure due to rupture or melting following a complete drainage is extremely dependent on the storage configuration and the spent fuel decay period, and that the minimum prerequisite decay time to preclude clad failure may vary from less than 10 days for some storage configurations to several years for others."

The report discusses emergency aspects of pool water loss relevant to the Japanese situation. "An alternative way to maintain coolability, at least on a temporary basis, would be to provide an emergency water spray of sufficient intensity to remove the decay heat by its latent heat of vaporization. The water supply could be available from onsite hydrants, from onsite storage tanks, from remote portable storage tanks, or, preferably, from a combination of onsite and remote sources in order to reduce the risk of unavailability. Facility personnel would presumably be available to set up fire hoses and initiate the spray in the event of a complete power failure, and the spray would be continued until the source of the leak could be repaired."

The abstract for the BNL report reads: "This investigation provides an assessment of the likelihood and consequences of a severe accident in a spent fuel storage pool - the complete draining of the pool. Potential mechanisms and conditions for failure of the spent fuel, and the subsequent release of the fission products, are identified. Two older PWR and BWR spent fuel storage pool designs are considered based on a preliminary screening study which tried to identify vulnerabilities. Internal and external events and accidents are assessed. Conditions which could lead to failure of the spent fuel Zircaloy cladding as a result of cladding rupture or as a result of a self-sustaining oxidation reaction are presented. Propagation of a cladding fire to older stored fuel assemblies is evaluated. The uncertainties in the risk estimate are large, and areas where additional evaluations are needed to reduce uncertainty are identified."

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The crisis at the TEPCO Fukushima Daiichi Nuclear Power Station in Japan following the great earthquake and tsunami of March 11, 2011 has raised important issues about the safety of spent nuclear fuel rod storage, especially those located at the top of boiling water reactor (BWR) units. At press time, TEPCO is reporting that water levels in the spent nuclear fuel pools located above the reactors in the Number 3 and Number 4 units of the Fukushima Daiichi Power Station are heating up and running low on water. There is extreme concern that the fuel rods in those pools could overheat and possibly release large amounts of radiation. After a brief overview of the handling of spent nuclear fuels, we present two major studies for the Nuclear Regulatory Commission (NRC) which deal with the hazards of reactor spent fuel pools. The first report, by the Sandia Laboratories, specifically addresses the type of situation faced by TEPCO at Fukushima with boiling water reactors (BWR). The second report, by the Brookhaven National Laboratory, characterizes the radiological risks posed by storage of spent reactor fuel at commercial reactors. Finally, we reproduce a report by the GAO about the safety of spent nuclear fuel.

Allen Benjamin and others, writing in the Sandia report, state: "Analysis of spent fuel heatup following a hypothetical accident involving drainage of the storage pool is presented. Computations based upon a new computer code called SFUEL have been performed to assess the effect of decay time, fuel element design, storage rack design, packing density, room ventilation, drainage level, and other variables on the heatup characteristics of the spent fuel and to predict the conditions under which clad failure will occur. It has been found that the likelihood of clad failure due to rupture or melting following a complete drainage is extremely dependent on the storage configuration and the spent fuel decay period, and that the minimum prerequisite decay time to preclude clad failure may vary from less than 10 days for some storage configurations to several years for others."

The report discusses emergency aspects of pool water loss relevant to the Japanese situation. "An alternative way to maintain coolability, at least on a temporary basis, would be to provide an emergency water spray of sufficient intensity to remove the decay heat by its latent heat of vaporization. The water supply could be available from onsite hydrants, from onsite storage tanks, from remote portable storage tanks, or, preferably, from a combination of onsite and remote sources in order to reduce the risk of unavailability. Facility personnel would presumably be available to set up fire hoses and initiate the spray in the event of a complete power failure, and the spray would be continued until the source of the leak could be repaired."

The abstract for the BNL report reads: "This investigation provides an assessment of the likelihood and consequences of a severe accident in a spent fuel storage pool - the complete draining of the pool. Potential mechanisms and conditions for failure of the spent fuel, and the subsequent release of the fission products, are identified. Two older PWR and BWR spent fuel storage pool designs are considered based on a preliminary screening study which tried to identify vulnerabilities. Internal and external events and accidents are assessed. Conditions which could lead to failure of the spent fuel Zircaloy cladding as a result of cladding rupture or as a result of a self-sustaining oxidation reaction are presented. Propagation of a cladding fire to older stored fuel assemblies is evaluated. The uncertainties in the risk estimate are large, and areas where additional evaluations are needed to reduce uncertainty are identified."

More books from Progressive Management

Cover of the book 21st Century U.S. Military Manuals: Operations Field Manual - FM 3-0 (Value-Added Professional Format Series) by Progressive Management
Cover of the book 21st Century Adult Cancer Sourcebook: Male Breast Cancer - Clinical Data for Patients, Families, and Physicians by Progressive Management
Cover of the book The Quest for Relevant Air Power: Continental European Responses to the Air Power Challenges of the Post-Cold War Era - Allied Air Power and Air Forces, France, Germany, Netherlands, Sweden by Progressive Management
Cover of the book Races at War: Nationalism and Genocide in Twentieth Century Europe - U.N., Hague Regulations, Ethnic Cleansing, Nazi Germany, Holocaust, Eugenics, Euthanasia, Killing Jews, Balkans, Bosnian Muslims by Progressive Management
Cover of the book Resurgent Russia in 2030: Challenge for the USAF - Alternate Russian Futures, Political, Economic, and Military Background, Rising Power, Friend or Foe, Implications for the American Military by Progressive Management
Cover of the book Learning from Our Military History: The United States Army, Operation Iraqi Freedom, and the Potential for Operational Art and Thinking - Petraeus, COIN, Clausewitz, Counterinsurgency by Progressive Management
Cover of the book Enabling Others to Win in a Complex World: Maximizing Security Force Assistance Potential in the Regionally Aligned Brigade Combat Team - Iraqi Freedom, Relevance to Contemporary Environment by Progressive Management
Cover of the book USAF Medical Support for Special Operations Forces Tactical Doctrine: Air Force Tactics, Techniques, and Procedures 3-42.6 - SOF Operational Medical, Logistics, War Reserve Material, Training by Progressive Management
Cover of the book National Defense Intelligence College Paper: Bringing Intelligence About - Practitioners Reflect on Best Practices - CIA Analysis, Analytical Tradecraft, Process Management by Progressive Management
Cover of the book 21st Century U.S. Military Documents: Air Force C-32B Special Airlift Aircraft - Operations Procedures, Aircrew Evaluation Criteria, Aircrew Training Flying Operations by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: U.S. Marine Corps (USMC) Guide To Cold Weather Operations MCRP 3-35.1A (Value-Added Professional Format Series) by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: U.S. Marine Corps (USMC) Campaigning (Marine Air-Ground Task Force MAGTF) MCDP 1-2 (Value-Added Professional Format Series) by Progressive Management
Cover of the book Gemini Spacecraft Press Reference Book: Comprehensive Information on All Aspects of America's Two-Man Orbiting Spacecraft, Agena Docking Target, Systems by Progressive Management
Cover of the book 21st Century Down Syndrome (Trisomy 21) Sourcebook: Clinical Data for Patients, Families, and Physicians, including Signs, Symptoms, Diagnosis, Genetics, Chromosome Anomalies by Progressive Management
Cover of the book The Politics of Coercion: Toward a Theory of Coercive Airpower for Post-Cold War Conflict - Doctrine, Operation Desert Storm, Four Major Theories of Punishment, Risk, Decapitation, and Denial by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy