What Mathematics Do Students Know and How is that Knowledge Changing?

Evidence from the National Assessment of Educational Progress

Nonfiction, Reference & Language, Education & Teaching, Teaching, Teaching Methods, Science & Nature, Mathematics
Cover of the book What Mathematics Do Students Know and How is that Knowledge Changing? by , Information Age Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781681232027
Publisher: Information Age Publishing Publication: September 1, 2015
Imprint: Information Age Publishing Language: English
Author:
ISBN: 9781681232027
Publisher: Information Age Publishing
Publication: September 1, 2015
Imprint: Information Age Publishing
Language: English

This volume is intended for researchers, curriculum developers, policy makers, and classroom teachers who want comprehensive information on what students at grades 4, 8, and 12 (the grades assessed by NAEP) can and cannot do in mathematics. After two introductory chapters on the design of NAEP, the volume contains a chapter on the challenges in analyzing NAEP data at the item level followed by five chapters that report 2005 through 2013 student performance on specific assessment items. These chapters are organized by content area and then by topic (e.g., understanding of place value, knowledge of transformations, ability to use metric and U.S. systems of measurement) and thus provide baseline data on the proportion of students who are able to complete the mathematics tasks currently used in the upper elementary, middle, and high?school mathematics curriculum. Additional chapters focus on student reasoning, U.S. performance on international assessments, and using construct analysis rather than percent correct on clusters of items to understand student knowledge on specific mathematics topics. Several themes emerge from the volume. One is that while the rate of improvement in mathematics learning in grades 4 and 8 has slowed in recent years, it has slowed more on some topics than others. Another is that relatively minor changes in wording can have significant effects on student performance and thus it is difficult to be specific about what students can do without knowing exactly what questions they were asked. A third theme is that changes in performance over time can sometimes but not always be understood in terms of what students are taught. For example, there were substantial gains on several grade 4 items requiring understanding of fractions and that is probably because the amount of instruction on fractions in grades 3 and 4 has been increasing. In contrast, while relatively few twelfth?grade students have ever been good at factoring trinomials, performance on this skill seems to be decreasing. This suggests that while more students are completing advanced mathematics courses in high school, these courses are not helping in the area of factoring trinomials. Finally, there are limitations to using NAEP as a measure of student performance on the Common Core State Standards. To the extent that NAEP can be used, however, the NAEP data show a substantial gap between expectations and performance.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This volume is intended for researchers, curriculum developers, policy makers, and classroom teachers who want comprehensive information on what students at grades 4, 8, and 12 (the grades assessed by NAEP) can and cannot do in mathematics. After two introductory chapters on the design of NAEP, the volume contains a chapter on the challenges in analyzing NAEP data at the item level followed by five chapters that report 2005 through 2013 student performance on specific assessment items. These chapters are organized by content area and then by topic (e.g., understanding of place value, knowledge of transformations, ability to use metric and U.S. systems of measurement) and thus provide baseline data on the proportion of students who are able to complete the mathematics tasks currently used in the upper elementary, middle, and high?school mathematics curriculum. Additional chapters focus on student reasoning, U.S. performance on international assessments, and using construct analysis rather than percent correct on clusters of items to understand student knowledge on specific mathematics topics. Several themes emerge from the volume. One is that while the rate of improvement in mathematics learning in grades 4 and 8 has slowed in recent years, it has slowed more on some topics than others. Another is that relatively minor changes in wording can have significant effects on student performance and thus it is difficult to be specific about what students can do without knowing exactly what questions they were asked. A third theme is that changes in performance over time can sometimes but not always be understood in terms of what students are taught. For example, there were substantial gains on several grade 4 items requiring understanding of fractions and that is probably because the amount of instruction on fractions in grades 3 and 4 has been increasing. In contrast, while relatively few twelfth?grade students have ever been good at factoring trinomials, performance on this skill seems to be decreasing. This suggests that while more students are completing advanced mathematics courses in high school, these courses are not helping in the area of factoring trinomials. Finally, there are limitations to using NAEP as a measure of student performance on the Common Core State Standards. To the extent that NAEP can be used, however, the NAEP data show a substantial gap between expectations and performance.

More books from Information Age Publishing

Cover of the book Enacted Mathematics Curriculum by
Cover of the book Communities of Practice Vol. 1 by
Cover of the book Taking Play Seriously by
Cover of the book Perspectives and Provocations in Early Childhood Education by
Cover of the book Spirituality, Social Justice and Language Learning by
Cover of the book Religion, Education and Academic Success by
Cover of the book CoLaboratories of Democracy by
Cover of the book From Bureaucracy to Hyperarchy in Netcentric and Quick Learning Organizations by
Cover of the book Model Science Teacher Preparation Programs by
Cover of the book The Demography of the Hispanic Population by
Cover of the book DIY Punk as Education by
Cover of the book The Varieties of Leadership at Novarum Pharmaceuticals by
Cover of the book American Educational History Journal by
Cover of the book Learning Efficacy by
Cover of the book Neuroscience and Christian Formation by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy