What If There Were No Significance Tests?

Classic Edition

Nonfiction, Reference & Language, Education & Teaching, Teaching, Statistics, Health & Well Being, Psychology, Business & Finance, Economics
Cover of the book What If There Were No Significance Tests? by , Taylor and Francis
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781317242840
Publisher: Taylor and Francis Publication: March 2, 2016
Imprint: Routledge Language: English
Author:
ISBN: 9781317242840
Publisher: Taylor and Francis
Publication: March 2, 2016
Imprint: Routledge
Language: English

The classic edition of What If There Were No Significance Tests? highlights current statistical inference practices. Four areas are featured as essential for making inferences: sound judgment, meaningful research questions, relevant design, and assessing fit in multiple ways. Other options (data visualization, replication or meta-analysis), other features (mediation, moderation, multiple levels or classes), and other approaches (Bayesian analysis, simulation, data mining, qualitative inquiry) are also suggested.

The Classic Edition’s new Introduction demonstrates the ongoing relevance of the topic and the charge to move away from an exclusive focus on NHST, along with new methods to help make significance testing more accessible to a wider body of researchers to improve our ability to make more accurate statistical inferences. Part 1 presents an overview of significance testing issues. The next part discusses the debate in which significance testing should be rejected or retained. The third part outlines various methods that may supplement significance testing procedures. Part 4 discusses Bayesian approaches and methods and the use of confidence intervals versus significance tests. The book concludes with philosophy of science perspectives.

Rather than providing definitive prescriptions, the chapters are largely suggestive of general issues, concerns, and application guidelines. The editors allow readers to choose the best way to conduct hypothesis testing in their respective fields. For anyone doing research in the social sciences, this book is bound to become "must" reading. Ideal for use as a supplement for graduate courses in statistics or quantitative analysis taught in psychology, education, business, nursing, medicine, and the social sciences, the book also benefits independent researchers in the behavioral and social sciences and those who teach statistics.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The classic edition of What If There Were No Significance Tests? highlights current statistical inference practices. Four areas are featured as essential for making inferences: sound judgment, meaningful research questions, relevant design, and assessing fit in multiple ways. Other options (data visualization, replication or meta-analysis), other features (mediation, moderation, multiple levels or classes), and other approaches (Bayesian analysis, simulation, data mining, qualitative inquiry) are also suggested.

The Classic Edition’s new Introduction demonstrates the ongoing relevance of the topic and the charge to move away from an exclusive focus on NHST, along with new methods to help make significance testing more accessible to a wider body of researchers to improve our ability to make more accurate statistical inferences. Part 1 presents an overview of significance testing issues. The next part discusses the debate in which significance testing should be rejected or retained. The third part outlines various methods that may supplement significance testing procedures. Part 4 discusses Bayesian approaches and methods and the use of confidence intervals versus significance tests. The book concludes with philosophy of science perspectives.

Rather than providing definitive prescriptions, the chapters are largely suggestive of general issues, concerns, and application guidelines. The editors allow readers to choose the best way to conduct hypothesis testing in their respective fields. For anyone doing research in the social sciences, this book is bound to become "must" reading. Ideal for use as a supplement for graduate courses in statistics or quantitative analysis taught in psychology, education, business, nursing, medicine, and the social sciences, the book also benefits independent researchers in the behavioral and social sciences and those who teach statistics.

More books from Taylor and Francis

Cover of the book Ethnographies Revisited by
Cover of the book New Geographies of Race and Racism by
Cover of the book Youth, Citizenship and Social Change in a European Context by
Cover of the book Routledge Handbook of Gender and Environment by
Cover of the book English Lyric Poetry by
Cover of the book Dynamics of Pavement Structures by
Cover of the book The Fantasy Sport Industry by
Cover of the book Narrative and Metaphor in Education by
Cover of the book Second Order Project Management by
Cover of the book The Darfur Conflict by
Cover of the book Adaptive Architecture by
Cover of the book Claus Offe and the Critical Theory of the Capitalist State by
Cover of the book Synoptic and Dynamic Climatology by
Cover of the book Supervision in Psychoanalysis by
Cover of the book The State of the Jews by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy