Uncertainty Quantification in Computational Fluid Dynamics

Nonfiction, Science & Nature, Mathematics, Counting & Numeration, Computers, Advanced Computing, Computer Science
Cover of the book Uncertainty Quantification in Computational Fluid Dynamics by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319008851
Publisher: Springer International Publishing Publication: September 20, 2013
Imprint: Springer Language: English
Author:
ISBN: 9783319008851
Publisher: Springer International Publishing
Publication: September 20, 2013
Imprint: Springer
Language: English

Fluid flows are characterized by uncertain inputs such as random initial data, material and flux coefficients, and boundary conditions. The current volume addresses the pertinent issue of efficiently computing the flow uncertainty, given this initial randomness. It collects seven original review articles that cover improved versions of the Monte Carlo method (the so-called multi-level Monte Carlo method (MLMC)), moment-based stochastic Galerkin methods and modified versions of the stochastic collocation methods that use adaptive stencil selection of the ENO-WENO type in both physical and stochastic space. The methods are also complemented by concrete applications such as flows around aerofoils and rockets, problems of aeroelasticity (fluid-structure interactions), and shallow water flows for propagating water waves. The wealth of numerical examples provide evidence on the suitability of each proposed method as well as comparisons of different approaches.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Fluid flows are characterized by uncertain inputs such as random initial data, material and flux coefficients, and boundary conditions. The current volume addresses the pertinent issue of efficiently computing the flow uncertainty, given this initial randomness. It collects seven original review articles that cover improved versions of the Monte Carlo method (the so-called multi-level Monte Carlo method (MLMC)), moment-based stochastic Galerkin methods and modified versions of the stochastic collocation methods that use adaptive stencil selection of the ENO-WENO type in both physical and stochastic space. The methods are also complemented by concrete applications such as flows around aerofoils and rockets, problems of aeroelasticity (fluid-structure interactions), and shallow water flows for propagating water waves. The wealth of numerical examples provide evidence on the suitability of each proposed method as well as comparisons of different approaches.

More books from Springer International Publishing

Cover of the book Information Technology in Biomedicine by
Cover of the book Economies of Collaboration in Performance by
Cover of the book PET/MR Imaging by
Cover of the book Knowledge Management in Organizations by
Cover of the book Nonlinear Dynamics, Volume 2 by
Cover of the book Electric and Hybrid Buses for Urban Transport by
Cover of the book The Palgrave Handbook on the Economics of Manipulation in Sport by
Cover of the book Transfer Prices and Management Accounting by
Cover of the book Smart Card Research and Advanced Applications by
Cover of the book Critical Dietary Factors in Cancer Chemoprevention by
Cover of the book Mixed-Integer Representations in Control Design by
Cover of the book Real-Time Heterogeneous Video Transcoding for Low-Power Applications by
Cover of the book Integrating Behaviorism and Attachment Theory in Parent Coaching by
Cover of the book Posthuman Pedagogies in Practice by
Cover of the book Soil Geography of the USA by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy