Uncertainty Quantification in Computational Fluid Dynamics

Nonfiction, Science & Nature, Mathematics, Counting & Numeration, Computers, Advanced Computing, Computer Science
Cover of the book Uncertainty Quantification in Computational Fluid Dynamics by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319008851
Publisher: Springer International Publishing Publication: September 20, 2013
Imprint: Springer Language: English
Author:
ISBN: 9783319008851
Publisher: Springer International Publishing
Publication: September 20, 2013
Imprint: Springer
Language: English

Fluid flows are characterized by uncertain inputs such as random initial data, material and flux coefficients, and boundary conditions. The current volume addresses the pertinent issue of efficiently computing the flow uncertainty, given this initial randomness. It collects seven original review articles that cover improved versions of the Monte Carlo method (the so-called multi-level Monte Carlo method (MLMC)), moment-based stochastic Galerkin methods and modified versions of the stochastic collocation methods that use adaptive stencil selection of the ENO-WENO type in both physical and stochastic space. The methods are also complemented by concrete applications such as flows around aerofoils and rockets, problems of aeroelasticity (fluid-structure interactions), and shallow water flows for propagating water waves. The wealth of numerical examples provide evidence on the suitability of each proposed method as well as comparisons of different approaches.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Fluid flows are characterized by uncertain inputs such as random initial data, material and flux coefficients, and boundary conditions. The current volume addresses the pertinent issue of efficiently computing the flow uncertainty, given this initial randomness. It collects seven original review articles that cover improved versions of the Monte Carlo method (the so-called multi-level Monte Carlo method (MLMC)), moment-based stochastic Galerkin methods and modified versions of the stochastic collocation methods that use adaptive stencil selection of the ENO-WENO type in both physical and stochastic space. The methods are also complemented by concrete applications such as flows around aerofoils and rockets, problems of aeroelasticity (fluid-structure interactions), and shallow water flows for propagating water waves. The wealth of numerical examples provide evidence on the suitability of each proposed method as well as comparisons of different approaches.

More books from Springer International Publishing

Cover of the book Writing Centers in the Higher Education Landscape of the Arabian Gulf by
Cover of the book Qualitative Investment Decision-Making Methods under Hesitant Fuzzy Environments by
Cover of the book Critical Learning in Digital Networks by
Cover of the book Advances in Transitional Flow Modeling by
Cover of the book Remote Observatories for Amateur Astronomers by
Cover of the book The Rare Earth Elements by
Cover of the book Intelligent Computing Methodologies by
Cover of the book Ideology, Regionalism, and Society in Caribbean History by
Cover of the book Comprehensive Clinical Plasma Medicine by
Cover of the book Computers Helping People with Special Needs by
Cover of the book How to Deal with Climate Change? by
Cover of the book Anatomy of the Superhero Film by
Cover of the book Physical and Statistical Models for Steam Generator Clogging Diagnosis by
Cover of the book God and Abstract Objects by
Cover of the book Case Studies in Medical Toxicology by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy