Uncertainty Quantification in Computational Fluid Dynamics

Nonfiction, Science & Nature, Mathematics, Counting & Numeration, Computers, Advanced Computing, Computer Science
Cover of the book Uncertainty Quantification in Computational Fluid Dynamics by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319008851
Publisher: Springer International Publishing Publication: September 20, 2013
Imprint: Springer Language: English
Author:
ISBN: 9783319008851
Publisher: Springer International Publishing
Publication: September 20, 2013
Imprint: Springer
Language: English

Fluid flows are characterized by uncertain inputs such as random initial data, material and flux coefficients, and boundary conditions. The current volume addresses the pertinent issue of efficiently computing the flow uncertainty, given this initial randomness. It collects seven original review articles that cover improved versions of the Monte Carlo method (the so-called multi-level Monte Carlo method (MLMC)), moment-based stochastic Galerkin methods and modified versions of the stochastic collocation methods that use adaptive stencil selection of the ENO-WENO type in both physical and stochastic space. The methods are also complemented by concrete applications such as flows around aerofoils and rockets, problems of aeroelasticity (fluid-structure interactions), and shallow water flows for propagating water waves. The wealth of numerical examples provide evidence on the suitability of each proposed method as well as comparisons of different approaches.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Fluid flows are characterized by uncertain inputs such as random initial data, material and flux coefficients, and boundary conditions. The current volume addresses the pertinent issue of efficiently computing the flow uncertainty, given this initial randomness. It collects seven original review articles that cover improved versions of the Monte Carlo method (the so-called multi-level Monte Carlo method (MLMC)), moment-based stochastic Galerkin methods and modified versions of the stochastic collocation methods that use adaptive stencil selection of the ENO-WENO type in both physical and stochastic space. The methods are also complemented by concrete applications such as flows around aerofoils and rockets, problems of aeroelasticity (fluid-structure interactions), and shallow water flows for propagating water waves. The wealth of numerical examples provide evidence on the suitability of each proposed method as well as comparisons of different approaches.

More books from Springer International Publishing

Cover of the book Automotive NVH Technology by
Cover of the book The Phenomenology of Embodied Subjectivity by
Cover of the book Advances in Human Factors in Cybersecurity by
Cover of the book Logistics and Supply Chain Innovation by
Cover of the book Inventory Control Models with Motivational Policies by
Cover of the book Law and Opera by
Cover of the book Contemporary Famine Analysis by
Cover of the book Growing up Working Class by
Cover of the book Emerging from an Entrenched Colonial Economy by
Cover of the book Pronunciation Learning Strategies and Language Anxiety by
Cover of the book The Multiple Ligament Injured Knee by
Cover of the book Pediatric Orthopedics by
Cover of the book Informatics in Schools: Focus on Learning Programming by
Cover of the book Iron-Catalysed Hydrofunctionalisation of Alkenes and Alkynes by
Cover of the book Interfacial Wave Theory of Pattern Formation in Solidification by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy