Torsors, Étale Homotopy and Applications to Rational Points

Nonfiction, Science & Nature, Mathematics, Number Theory, Geometry
Cover of the book Torsors, Étale Homotopy and Applications to Rational Points by , Cambridge University Press
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781107241886
Publisher: Cambridge University Press Publication: April 18, 2013
Imprint: Cambridge University Press Language: English
Author:
ISBN: 9781107241886
Publisher: Cambridge University Press
Publication: April 18, 2013
Imprint: Cambridge University Press
Language: English

Torsors, also known as principal bundles or principal homogeneous spaces, are ubiquitous in mathematics. The purpose of this book is to present expository lecture notes and cutting-edge research papers on the theory and applications of torsors and étale homotopy, all written from different perspectives by leading experts. Part one of the book contains lecture notes on recent uses of torsors in geometric invariant theory and representation theory, plus an introduction to the étale homotopy theory of Artin and Mazur. Part two of the book features a milestone paper on the étale homotopy approach to the arithmetic of rational points. Furthermore, the reader will find a collection of research articles on algebraic groups and homogeneous spaces, rational and K3 surfaces, geometric invariant theory, rational points, descent and the Brauer–Manin obstruction. Together, these give a state-of-the-art view of a broad area at the crossroads of number theory and algebraic geometry.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Torsors, also known as principal bundles or principal homogeneous spaces, are ubiquitous in mathematics. The purpose of this book is to present expository lecture notes and cutting-edge research papers on the theory and applications of torsors and étale homotopy, all written from different perspectives by leading experts. Part one of the book contains lecture notes on recent uses of torsors in geometric invariant theory and representation theory, plus an introduction to the étale homotopy theory of Artin and Mazur. Part two of the book features a milestone paper on the étale homotopy approach to the arithmetic of rational points. Furthermore, the reader will find a collection of research articles on algebraic groups and homogeneous spaces, rational and K3 surfaces, geometric invariant theory, rational points, descent and the Brauer–Manin obstruction. Together, these give a state-of-the-art view of a broad area at the crossroads of number theory and algebraic geometry.

More books from Cambridge University Press

Cover of the book Event Representation in Language and Cognition by
Cover of the book A History of the University in Europe: Volume 4, Universities since 1945 by
Cover of the book Luther and the Reformation of the Later Middle Ages by
Cover of the book The Philosophy of Hebrew Scripture by
Cover of the book Implementing Article 3 of the United Nations Convention on the Rights of the Child by
Cover of the book The Behavioral Neurology of Dementia by
Cover of the book Materials in Mechanical Extremes by
Cover of the book Paying for the Liberal State by
Cover of the book The Cambridge Companion to Isaiah Berlin by
Cover of the book The Resources of the Past in Early Medieval Europe by
Cover of the book Formal Languages in Logic by
Cover of the book Just War Theory and Civilian Casualties by
Cover of the book The Intellectual World of the Italian Renaissance by
Cover of the book The Cambridge Companion to Abelard by
Cover of the book Lord Rochester in the Restoration World by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy