The X-43A Flight Research Program: Lessons Learned on the Road to Mach 10 - Hyper-X (HXRV), Hypersonic Scramjet, National Aero-Space Plane (NASP), HySTP, Dan Goldin, Fullerton

Nonfiction, Science & Nature, Technology, Aeronautics & Astronautics, Science, Physics, Astrophysics & Space Science
Cover of the book The X-43A Flight Research Program: Lessons Learned on the Road to Mach 10 - Hyper-X (HXRV), Hypersonic Scramjet, National Aero-Space Plane (NASP), HySTP, Dan Goldin, Fullerton by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781310861543
Publisher: Progressive Management Publication: April 29, 2015
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781310861543
Publisher: Progressive Management
Publication: April 29, 2015
Imprint: Smashwords Edition
Language: English

Professionally converted for accurate flowing-text e-book format reproduction, this NASA report provides a comprehensive history of the X-43A Hyper-X (Hypersonic Experiment) program. In this NASA project, a supersonic combustion ramjet (scramjet) engine was flight tested on a subscale vehicle. The X-43A Hyper-X Research Vehicle (HXRV) was launched from a B-52B mothership, then boosted to the test speed by a modified Pegasus rocket first stage, called the Hyper-X Launch Vehicle (HXLV). Once at the proper speed and altitude, the X-43A separated from the booster, stabilized itself, and then the engine test began. Although wind-tunnel scramjet engine tests had begun in the late 1950s, before the Hyper-X program there had never been an actual in-flight test of such an engine integrated with an appropriate airframe. Thus, while the scramjet had successfully operated in the artificial airflow of wind tunnels, the concept had yet to be proven in "real air." These conditions meant changes in density and temperature, as well as changes in angle of attack and sideslip of a free-flying vehicle. A wind tunnel is limited in its ability to simulate these subtle factures, which have a major impact on almost any vehicle, but especially that of a scramjet's performance. The Hyper-X project was to provide a real-world benchmark of the ground test data. The full scale X-43A engine would be operated in the wind tunnel, and then flown, and the data from its operation would then be compared with projections. If these matched, the wind tunnel data would be considered a reliable design tool for future scramjet. If there were significant differences, the reasons for these would have to be identified. Until such information was available, scramjets would lack the technological maturity to be considered for future space launch or high-speed atmospheric flight vehicles.

What would eventually become the Hyper-X project had its start within the NASP. This was ironic, as NASP project managers rejected the very idea of a short-term, limited-goal effort built around a subscale vehicle. It took a long time for them to finally accept this approach. Among reasons that the NASP program was focused on development of a full-scale test aircraft was the belief of many researchers and contractors that data from a subscale scramjet could not be scaled up to a full-size engine without introducing errors. Indeed, as time passed, the contractors found that they became less confident that they could predict general performance from specific data points. There were uncertainties in many data points, and those uncertainties changed. For these reasons, all of the contractors believed that only a prototype near-full-scale vehicle with a maximum speed above Mach 20 would give them real confidence in their performance predictions for a single-stage-to-orbit design.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Professionally converted for accurate flowing-text e-book format reproduction, this NASA report provides a comprehensive history of the X-43A Hyper-X (Hypersonic Experiment) program. In this NASA project, a supersonic combustion ramjet (scramjet) engine was flight tested on a subscale vehicle. The X-43A Hyper-X Research Vehicle (HXRV) was launched from a B-52B mothership, then boosted to the test speed by a modified Pegasus rocket first stage, called the Hyper-X Launch Vehicle (HXLV). Once at the proper speed and altitude, the X-43A separated from the booster, stabilized itself, and then the engine test began. Although wind-tunnel scramjet engine tests had begun in the late 1950s, before the Hyper-X program there had never been an actual in-flight test of such an engine integrated with an appropriate airframe. Thus, while the scramjet had successfully operated in the artificial airflow of wind tunnels, the concept had yet to be proven in "real air." These conditions meant changes in density and temperature, as well as changes in angle of attack and sideslip of a free-flying vehicle. A wind tunnel is limited in its ability to simulate these subtle factures, which have a major impact on almost any vehicle, but especially that of a scramjet's performance. The Hyper-X project was to provide a real-world benchmark of the ground test data. The full scale X-43A engine would be operated in the wind tunnel, and then flown, and the data from its operation would then be compared with projections. If these matched, the wind tunnel data would be considered a reliable design tool for future scramjet. If there were significant differences, the reasons for these would have to be identified. Until such information was available, scramjets would lack the technological maturity to be considered for future space launch or high-speed atmospheric flight vehicles.

What would eventually become the Hyper-X project had its start within the NASP. This was ironic, as NASP project managers rejected the very idea of a short-term, limited-goal effort built around a subscale vehicle. It took a long time for them to finally accept this approach. Among reasons that the NASP program was focused on development of a full-scale test aircraft was the belief of many researchers and contractors that data from a subscale scramjet could not be scaled up to a full-size engine without introducing errors. Indeed, as time passed, the contractors found that they became less confident that they could predict general performance from specific data points. There were uncertainties in many data points, and those uncertainties changed. For these reasons, all of the contractors believed that only a prototype near-full-scale vehicle with a maximum speed above Mach 20 would give them real confidence in their performance predictions for a single-stage-to-orbit design.

More books from Progressive Management

Cover of the book Wernher von Braun: His Life and Work from German Missiles to the Saturn V Moon Rocket - An Expansive Compilation of Authoritative NASA History Documents and Selections by Progressive Management
Cover of the book Right Sizing the People's Liberation Army: Exploring the Contours of China's Military - Taiwan, Xinjiang, Uighurs, Tibet, Senkaku, Chinese Combat Aircraft, PLA Air Force, Naval Force, Nuclear by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: Human Resources Support (FM 1-0) - Manning the Force, Casualty Operations, Morale and Welfare Support (Professional Format Series) by Progressive Management
Cover of the book Responsibility of Command: How UN and NATO Commanders Influenced Airpower over Bosnia - History of the Bosnia War, Operation Deny Flight, Srebrenica by Progressive Management
Cover of the book Sustaining Souls: Work of the U.S. Army Chaplain Corps, Soldiers and Families, Religious Formation and Chaplain Identity, Ethos, Commander Assessment of Effectiveness by Progressive Management
Cover of the book Small Wind Electric Systems: Consumers Guide with Practical Information for Homeowners, Farmer, Ranchers, Small Businesses by Progressive Management
Cover of the book Gangs and Crime in America: Mara Salvatrucha Street Gang: International Criminal Enterprise with Roots in El Salvador's Civil War - Cliques in the U.S., Organization, Membership, Violence, Rivalries by Progressive Management
Cover of the book A History of Marine Fighter Attack Squadron 115: World War II Pacific Action, Philippine Combat, China, Hawaiian, Korea, Japan - U.S. Shuttle, Vietnam, Thailand Deployment, Unusual Air-Ground Tactics by Progressive Management
Cover of the book 21st Century Adult Cancer Sourcebook: Primary CNS Lymphoma - Clinical Data for Patients, Families, and Physicians by Progressive Management
Cover of the book 21st Century Adult Cancer Sourcebook: Rectal Cancer (Cancer of the Rectum) - Clinical Data for Patients, Families, and Physicians by Progressive Management
Cover of the book The Decisiveness of the Battle of Midway: Implications of the World War II Battle in the Context of the Pacific War and Strategic Decision Making by the Allies and the Japanese by Progressive Management
Cover of the book The Makara of Hizballah: Deception in the 2006 Summer War - History and Organization of Hizballah, Lebanon, Chain of Command, Hijacking the Internet, Bunkers, Denial Operations, Electronic Warfare by Progressive Management
Cover of the book NIOSH Nanotechnology Safety: Safe Nanotechnology in the Workplace, Workers Exposed to Engineered Nanoparticles, Health and Safety Concerns Research by Progressive Management
Cover of the book The Red River War 1874-1875: Evidence of Operational Art and Mission Command, History of the Largest Army Campaign Against Indians after Civil War, including the Cheyenne, Comanche, and Kiowa Tribes by Progressive Management
Cover of the book America's Small Manufacturers, Businesses and Entrepreneurs - Reports on Capital Access, Government Support, Manufacturing Extension Partnership (MEP) by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy