The Theory of Spinors

Nonfiction, Science & Nature, Mathematics, Topology, Science, Physics, General Physics
Cover of the book The Theory of Spinors by Élie Cartan, Dover Publications
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Élie Cartan ISBN: 9780486137322
Publisher: Dover Publications Publication: April 30, 2012
Imprint: Dover Publications Language: English
Author: Élie Cartan
ISBN: 9780486137322
Publisher: Dover Publications
Publication: April 30, 2012
Imprint: Dover Publications
Language: English

The French mathematician Élie Cartan (1869–1951) was one of the founders of the modern theory of Lie groups, a subject of central importance in mathematics and also one with many applications. In this volume, he describes the orthogonal groups, either with real or complex parameters including reflections, and also the related groups with indefinite metrics. He develops the theory of spinors (he discovered the general mathematical form of spinors in 1913) systematically by giving a purely geometrical definition of these mathematical entities; this geometrical origin makes it very easy to introduce spinors into Riemannian geometry, and particularly to apply the idea of parallel transport to these geometrical entities.
The book is divided into two parts. The first is devoted to generalities on the group of rotations in n-dimensional space and on the linear representations of groups, and to the theory of spinors in three-dimensional space. Finally, the linear representations of the group of rotations in that space (of particular importance to quantum mechanics) are also examined. The second part is devoted to the theory of spinors in spaces of any number of dimensions, and particularly in the space of special relativity (Minkowski space). While the basic orientation of the book as a whole is mathematical, physicists will be especially interested in the final chapters treating the applications of spinors in the rotation and Lorentz groups. In this connection, Cartan shows how to derive the "Dirac" equation for any group, and extends the equation to general relativity.
One of the greatest mathematicians of the 20th century, Cartan made notable contributions in mathematical physics, differential geometry, and group theory. Although a profound theorist, he was able to explain difficult concepts with clarity and simplicity. In this detailed, explicit treatise, mathematicians specializing in quantum mechanics will find his lucid approach a great value.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The French mathematician Élie Cartan (1869–1951) was one of the founders of the modern theory of Lie groups, a subject of central importance in mathematics and also one with many applications. In this volume, he describes the orthogonal groups, either with real or complex parameters including reflections, and also the related groups with indefinite metrics. He develops the theory of spinors (he discovered the general mathematical form of spinors in 1913) systematically by giving a purely geometrical definition of these mathematical entities; this geometrical origin makes it very easy to introduce spinors into Riemannian geometry, and particularly to apply the idea of parallel transport to these geometrical entities.
The book is divided into two parts. The first is devoted to generalities on the group of rotations in n-dimensional space and on the linear representations of groups, and to the theory of spinors in three-dimensional space. Finally, the linear representations of the group of rotations in that space (of particular importance to quantum mechanics) are also examined. The second part is devoted to the theory of spinors in spaces of any number of dimensions, and particularly in the space of special relativity (Minkowski space). While the basic orientation of the book as a whole is mathematical, physicists will be especially interested in the final chapters treating the applications of spinors in the rotation and Lorentz groups. In this connection, Cartan shows how to derive the "Dirac" equation for any group, and extends the equation to general relativity.
One of the greatest mathematicians of the 20th century, Cartan made notable contributions in mathematical physics, differential geometry, and group theory. Although a profound theorist, he was able to explain difficult concepts with clarity and simplicity. In this detailed, explicit treatise, mathematicians specializing in quantum mechanics will find his lucid approach a great value.

More books from Dover Publications

Cover of the book Claude Debussy Piano Music 1888-1905 by Élie Cartan
Cover of the book How to Make Super Pop-Ups by Élie Cartan
Cover of the book Drawing Lessons by Élie Cartan
Cover of the book Japanese Animal and Floral Crest Designs by Élie Cartan
Cover of the book Navaho Indian Myths by Élie Cartan
Cover of the book The Adventures of Bob White by Élie Cartan
Cover of the book German Requiem in Full Score by Élie Cartan
Cover of the book The Cherry Orchard by Élie Cartan
Cover of the book Authentic Art Deco Jewelry Designs by Élie Cartan
Cover of the book Tatting Hearts by Élie Cartan
Cover of the book The I Ching by Élie Cartan
Cover of the book The Rhythm Book by Élie Cartan
Cover of the book Edible Wild Plants of Eastern North America by Élie Cartan
Cover of the book The Elements of Grammar in 90 Minutes by Élie Cartan
Cover of the book A Dictionary and Glossary of the Koran by Élie Cartan
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy