The Theory of Hardy's Z-Function

Nonfiction, Science & Nature, Mathematics, Number Theory, Science
Cover of the book The Theory of Hardy's Z-Function by Professor Aleksandar Ivić, Cambridge University Press
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Professor Aleksandar Ivić ISBN: 9781139794350
Publisher: Cambridge University Press Publication: September 27, 2012
Imprint: Cambridge University Press Language: English
Author: Professor Aleksandar Ivić
ISBN: 9781139794350
Publisher: Cambridge University Press
Publication: September 27, 2012
Imprint: Cambridge University Press
Language: English

Hardy's Z-function, related to the Riemann zeta-function ζ(s), was originally utilised by G. H. Hardy to show that ζ(s) has infinitely many zeros of the form ½+it. It is now amongst the most important functions of analytic number theory, and the Riemann hypothesis, that all complex zeros lie on the line ½+it, is perhaps one of the best known and most important open problems in mathematics. Today Hardy's function has many applications; among others it is used for extensive calculations regarding the zeros of ζ(s). This comprehensive account covers many aspects of Z(t), including the distribution of its zeros, Gram points, moments and Mellin transforms. It features an extensive bibliography and end-of-chapter notes containing comments, remarks and references. The book also provides many open problems to stimulate readers interested in further research.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Hardy's Z-function, related to the Riemann zeta-function ζ(s), was originally utilised by G. H. Hardy to show that ζ(s) has infinitely many zeros of the form ½+it. It is now amongst the most important functions of analytic number theory, and the Riemann hypothesis, that all complex zeros lie on the line ½+it, is perhaps one of the best known and most important open problems in mathematics. Today Hardy's function has many applications; among others it is used for extensive calculations regarding the zeros of ζ(s). This comprehensive account covers many aspects of Z(t), including the distribution of its zeros, Gram points, moments and Mellin transforms. It features an extensive bibliography and end-of-chapter notes containing comments, remarks and references. The book also provides many open problems to stimulate readers interested in further research.

More books from Cambridge University Press

Cover of the book Northwest Europe in the Early Middle Ages, c.AD 600–1150 by Professor Aleksandar Ivić
Cover of the book Reasons for Action by Professor Aleksandar Ivić
Cover of the book Riemann Surfaces and Algebraic Curves by Professor Aleksandar Ivić
Cover of the book EU Criminal Justice and the Challenges of Diversity by Professor Aleksandar Ivić
Cover of the book Advanced Solid State Physics by Professor Aleksandar Ivić
Cover of the book Global Historical Sociology by Professor Aleksandar Ivić
Cover of the book The Distinctiveness of Religion in American Law by Professor Aleksandar Ivić
Cover of the book Music: A Mathematical Offering by Professor Aleksandar Ivić
Cover of the book Integrity and the Virtues of Reason by Professor Aleksandar Ivić
Cover of the book European Environmental Law by Professor Aleksandar Ivić
Cover of the book The Mechanical Hypothesis in Ancient Greek Natural Philosophy by Professor Aleksandar Ivić
Cover of the book The Past Is a Foreign Country – Revisited by Professor Aleksandar Ivić
Cover of the book Kant and his German Contemporaries: Volume 2, Aesthetics, History, Politics, and Religion by Professor Aleksandar Ivić
Cover of the book Constituent Assemblies by Professor Aleksandar Ivić
Cover of the book The Memory of the People by Professor Aleksandar Ivić
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy