The Rewiring Brain

A Computational Approach to Structural Plasticity in the Adult Brain

Nonfiction, Health & Well Being, Psychology, Developmental Psychology, Science & Nature, Science, Biological Sciences
Cover of the book The Rewiring Brain by , Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9780128038727
Publisher: Elsevier Science Publication: June 23, 2017
Imprint: Academic Press Language: English
Author:
ISBN: 9780128038727
Publisher: Elsevier Science
Publication: June 23, 2017
Imprint: Academic Press
Language: English

The adult brain is not as hard-wired as traditionally thought. By modifying their small- or large-scale morphology, neurons can make new synaptic connections or break existing ones (structural plasticity). Structural changes accompany memory formation and learning, and are induced by neurogenesis, neurodegeneration and brain injury such as stroke.

Exploring the role of structural plasticity in the brain can be greatly assisted by mathematical and computational models, as they enable us to bridge the gap between system-level dynamics and lower level cellular and molecular processes. However, most traditional neural network models have fixed neuronal morphologies and a static connectivity pattern, with plasticity merely arising from changes in the strength of existing synapses (synaptic plasticity). In The Rewiring Brain, the editors bring together for the first time contemporary modeling studies that investigate the implications of structural plasticity for brain function and pathology. Starting with an experimental background on structural plasticity in the adult brain, the book covers computational studies on homeostatic structural plasticity, the impact of structural plasticity on cognition and cortical connectivity, the interaction between synaptic and structural plasticity, neurogenesis-related structural plasticity, and structural plasticity in neurological disorders.

Structural plasticity adds a whole new dimension to brain plasticity, and The Rewiring Brain shows how computational approaches may help to gain a better understanding of the full adaptive potential of the adult brain. The book is written for both computational and experimental neuroscientists.

  • Reviews the current state of knowledge of structural plasticity in the adult brain
  • Gives a comprehensive overview of computational studies on structural plasticity
  • Provides insights into the potential driving forces of structural plasticity and the functional implications of structural plasticity for learning and memory
  • Serves as inspiration for developing novel treatment strategies for stimulating functional repair after brain damage
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The adult brain is not as hard-wired as traditionally thought. By modifying their small- or large-scale morphology, neurons can make new synaptic connections or break existing ones (structural plasticity). Structural changes accompany memory formation and learning, and are induced by neurogenesis, neurodegeneration and brain injury such as stroke.

Exploring the role of structural plasticity in the brain can be greatly assisted by mathematical and computational models, as they enable us to bridge the gap between system-level dynamics and lower level cellular and molecular processes. However, most traditional neural network models have fixed neuronal morphologies and a static connectivity pattern, with plasticity merely arising from changes in the strength of existing synapses (synaptic plasticity). In The Rewiring Brain, the editors bring together for the first time contemporary modeling studies that investigate the implications of structural plasticity for brain function and pathology. Starting with an experimental background on structural plasticity in the adult brain, the book covers computational studies on homeostatic structural plasticity, the impact of structural plasticity on cognition and cortical connectivity, the interaction between synaptic and structural plasticity, neurogenesis-related structural plasticity, and structural plasticity in neurological disorders.

Structural plasticity adds a whole new dimension to brain plasticity, and The Rewiring Brain shows how computational approaches may help to gain a better understanding of the full adaptive potential of the adult brain. The book is written for both computational and experimental neuroscientists.

More books from Elsevier Science

Cover of the book Fundamental Statistical Principles for the Neurobiologist by
Cover of the book Networked Graphics by
Cover of the book Plant Tissue Culture by
Cover of the book Parasitic Infections and the Immune System by
Cover of the book Matrix Metalloproteinases by
Cover of the book Fluoropolymer Applications in the Chemical Processing Industries by
Cover of the book Introduction to Optimum Design by
Cover of the book Funding the Greek Crisis by
Cover of the book Advanced Techniques in Gas Chromatography-Mass Spectrometry (GC-MS-MS and GC-TOF-MS) for Environmental Chemistry by
Cover of the book Carbon Nanotube Reinforced Composites by
Cover of the book Accelerated Predictive Stability (APS) by
Cover of the book Subsea Engineering Handbook by
Cover of the book Processing and Properties of Compound Semiconductors by
Cover of the book Experimental Design in Petroleum Reservoir Studies by
Cover of the book Advances in Cancer Research by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy