The Art and Science of Analyzing Software Data

Nonfiction, Computers, Database Management, Data Processing, Programming, Software Development, General Computing
Cover of the book The Art and Science of Analyzing Software Data by , Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9780124115439
Publisher: Elsevier Science Publication: September 2, 2015
Imprint: Morgan Kaufmann Language: English
Author:
ISBN: 9780124115439
Publisher: Elsevier Science
Publication: September 2, 2015
Imprint: Morgan Kaufmann
Language: English

The Art and Science of Analyzing Software Data provides valuable information on analysis techniques often used to derive insight from software data. This book shares best practices in the field generated by leading data scientists, collected from their experience training software engineering students and practitioners to master data science.

The book covers topics such as the analysis of security data, code reviews, app stores, log files, and user telemetry, among others. It covers a wide variety of techniques such as co-change analysis, text analysis, topic analysis, and concept analysis, as well as advanced topics such as release planning and generation of source code comments. It includes stories from the trenches from expert data scientists illustrating how to apply data analysis in industry and open source, present results to stakeholders, and drive decisions.

  • Presents best practices, hints, and tips to analyze data and apply tools in data science projects
  • Presents research methods and case studies that have emerged over the past few years to further understanding of software data
  • Shares stories from the trenches of successful data science initiatives in industry
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The Art and Science of Analyzing Software Data provides valuable information on analysis techniques often used to derive insight from software data. This book shares best practices in the field generated by leading data scientists, collected from their experience training software engineering students and practitioners to master data science.

The book covers topics such as the analysis of security data, code reviews, app stores, log files, and user telemetry, among others. It covers a wide variety of techniques such as co-change analysis, text analysis, topic analysis, and concept analysis, as well as advanced topics such as release planning and generation of source code comments. It includes stories from the trenches from expert data scientists illustrating how to apply data analysis in industry and open source, present results to stakeholders, and drive decisions.

More books from Elsevier Science

Cover of the book Model-Based Engineering for Complex Electronic Systems by
Cover of the book Rational Design of Enzyme-Nanomaterials by
Cover of the book Scientific Bases for the Preparation of Heterogeneous Catalysts by
Cover of the book International Review of Neurobiology by
Cover of the book Protein Folding in Silico by
Cover of the book Base Metals Handbook by
Cover of the book Conversations with Leading Academic and Research Library Directors by
Cover of the book Hip Disorders in Children by
Cover of the book Techniques for Corrosion Monitoring by
Cover of the book Pulp and Paper Industry by
Cover of the book Therapeutic Risk Management of Medicines by
Cover of the book Fluorinated Coatings and Finishes Handbook by
Cover of the book Non-Executive Director's Handbook by
Cover of the book Energy Efficiency in Data Centers and Clouds by
Cover of the book Advances in Computers by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy