Strategic Economic Decision-Making

Using Bayesian Belief Networks to Solve Complex Problems

Nonfiction, Social & Cultural Studies, Social Science, Statistics, Science & Nature, Mathematics
Cover of the book Strategic Economic Decision-Making by Jeff Grover, Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Jeff Grover ISBN: 9781461460404
Publisher: Springer New York Publication: December 5, 2012
Imprint: Springer Language: English
Author: Jeff Grover
ISBN: 9781461460404
Publisher: Springer New York
Publication: December 5, 2012
Imprint: Springer
Language: English

Strategic Economic Decision-Making: Using Bayesian Belief Networks to Solve Complex Problems is a quick primer on the topic that introduces readers to the basic complexities and nuances associated with learning Bayes’ theory and inverse probability for the first time. This brief is meant for non-statisticians who are unfamiliar with Bayes’ theorem, walking them through the theoretical phases of set and sample set selection, the axioms of probability, probability theory as it pertains to Bayes’ theorem, and posterior probabilities. All of these concepts are explained as they appear in the methodology of fitting a Bayes’ model, and upon completion of the text readers will be able to mathematically determine posterior probabilities of multiple independent nodes across any system available for study.  Very little has been published in the area of discrete Bayes’ theory, and this brief will appeal to non-statisticians conducting research in the fields of engineering, computing, life sciences, and social sciences.    

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Strategic Economic Decision-Making: Using Bayesian Belief Networks to Solve Complex Problems is a quick primer on the topic that introduces readers to the basic complexities and nuances associated with learning Bayes’ theory and inverse probability for the first time. This brief is meant for non-statisticians who are unfamiliar with Bayes’ theorem, walking them through the theoretical phases of set and sample set selection, the axioms of probability, probability theory as it pertains to Bayes’ theorem, and posterior probabilities. All of these concepts are explained as they appear in the methodology of fitting a Bayes’ model, and upon completion of the text readers will be able to mathematically determine posterior probabilities of multiple independent nodes across any system available for study.  Very little has been published in the area of discrete Bayes’ theory, and this brief will appeal to non-statisticians conducting research in the fields of engineering, computing, life sciences, and social sciences.    

More books from Springer New York

Cover of the book Neurovascular Neuropsychology by Jeff Grover
Cover of the book The Real Issues of the Middle East and the Arab Spring by Jeff Grover
Cover of the book Remediation in Medical Education by Jeff Grover
Cover of the book Newtonian Nonlinear Dynamics for Complex Linear and Optimization Problems by Jeff Grover
Cover of the book Family Firms in Transition by Jeff Grover
Cover of the book A Business Perspective on Industry and Health Care by Jeff Grover
Cover of the book Advances in Metaheuristics by Jeff Grover
Cover of the book Edible Films and Coatings for Food Applications by Jeff Grover
Cover of the book Social Issues in China by Jeff Grover
Cover of the book Why Is Everyone Else Wrong? by Jeff Grover
Cover of the book The Sclera by Jeff Grover
Cover of the book Mobile Social Networking by Jeff Grover
Cover of the book Global Handbook on Noncommunicable Diseases and Health Promotion by Jeff Grover
Cover of the book Topics on the Dynamics of Civil Structures, Volume 1 by Jeff Grover
Cover of the book Learning Basic Genetics with Interactive Computer Programs by Jeff Grover
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy